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Abstract: In this paper, we focus on the structure of Polycyclic Aromatic 
Hydrocarbons (PAHs) and calculate the Omega and its related counting 
polynomials of nanostructures. Also, the exact expressions for the Theta, Sadhana, 
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 Introduction 

Graph theory has found considerable use in Chemistry, notably in 

modelling chemical structures. In chemical graph theory, the vertices 

correspond to the atoms and also the edges correspond to the bonds. 

Topological indices have some applications in theoretical chemistry, 

particularly in QSPR/QSAR research.1 There is a lot of research which has 

been done on topological indices of various graph families so far, and is of 
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much importance due to their chemical significance. A nanostructure is an 

object of intermediate size between microscopic and molecular structures. It 

is a product derived through engineering at molecular scale. Carbon 

nanotubes have exhibited unusual properties in experimental sciences. They 

have noteworthy applications in engineering sciences, material sciences and 

optics. Diudea was the first chemist who considered the matter of 

computing topological indices of nanostructures.2-7 In the present article, we 

continue our works on computing some topological indices of 

nanostructures.8-12 

Now, we introduce some notation and terminology. A graph ܩ 

consist of a set of vertices ܸሺܩሻ and a set of edges ܧሺܩሻ. The number of 

vertices and edges in a graph will be denoted by |ܸሺܩሻ| and	|ܧሺܩሻ|, 

respectively. The degree, ݀݁݃	ሺݑሻ	of a vertex ݑ ∈ ܸሺܩሻ is the number of 

vertices of ܩ adjacent to	ݑ. The distance between ݑ and ݒ in	ܸሺܩሻ,	݀ሺݑ,  ,ሻݒ

is the length of a shortest ݒ_ݑ path in ܩ. Two edges e=uv and f=xy of ܩ are 

called co-distant, “e co f”, if and only if they obey the following relation: 

݀ሺݒ, ሻݔ ൌ ݀ሺݒ, ሻݕ ൅ 1 ൌ ݀ሺݑ, ሻݔ ൅ 1 ൌ ݀ሺݑ,  .ሻݕ

The above relation co is reflexive and symmetric for any edge ݁ of ܩ 

but in general is not transitive. A graph is called a co-graph if the relation 

  .is also transitive and thus an equivalence relation ݋ܿ

Let ܥሺ݁ሻ: ൌ ሼ	݂	 ∈ ;ሻܩሺܧ  that are ܩ ሽ be the set of edges in݁	݋ܿ	݂	

co-distant to	݁ ∈  ሺ݁ሻ can be obtained by an orthogonal edgeܥ ሻ . The setܩሺܧ

cutting procedure: take a straight line segment, orthogonal to the edge ݁, 

and intersect it and all other edges (of a polygonal plane graph) parallel to ݁. 

The set of these intersections is called an orthogonal cut (ܿ݋ for short) of ܩ, 

with respect to ݁. If ܩ is a co-graph then its orthogonal cuts ܥଵ	, ,	ଶܥ … ,   ௞ܥ

form a partition of ܧሺܩሻ: 

ሻܩሺܧ ൌ ଵܥ 	∪ ଶܥ 	∪ …∪ ௜ܥ ,௞ܥ ∩ ௝ܥ ൌ ∅ for ݅ ് ݆ and ݅, ݆ ൌ 1,2, … , ݇. 
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If any two consecutive edges ݁ and ݂	of a plane graph ܩ	of an edge-

cut sequence are topologically parallel within the same face of the covering, 

such a sequence is called a quasi-orthogonal cut (qoc) strip. Obviously, any 

orthogonal cut strip is a qoc strip but the reverse is not always true. This 

means the transitivity relation of the co relation is not necessarily obeyed. 

Omega and its related counting polynomials: 

Four counting polynomials have been defined on the ground of qoc 

strips: 

,ܩሺߗ ሻݔ ൌ෍݉ሺܩ, ܿሻ. ௖ݔ

௖

ሺ1ሻ 

,ܩሺ߆ ሻݔ ൌ෍݉ሺܩ, ܿሻ. ܿ. ௖ݔ

௖

ሺ2ሻ 

ܵ݀ሺܩ, ሻݔ ൌ෍݉ሺܩ, ܿሻ. ாሺீሻ|ି௖|ݔ

௖

ሺ3ሻ 

,ܩሺߎ ሻݔ ൌ෍݉ሺܩ, ܿሻ. ܿ. ாሺீሻ|ି௖|ݔ

௖

ሺ4ሻ  

with ݉ሺܩ, ܿሻ being the number of strips of length ܿ. For more study, see 

papers.13-15 	ߗሺܩ, ,ܩሺ߆ and	ሻݔ  ܩ ሻ polynomials count equidistant edges inݔ

while ܵ݀ሺܩ, ,ܩሺߎ	ሻ andݔ   .ሻ, non-equidistant edgesݔ

Some topological indices: 

The first derivative (computed at ݔ ൌ 1) of these counting 

polynomials give interesting inter-relations and valuable information on the 

graph 

,ܩᇱሺ߆ 1ሻ ൌ෍݉ሺܩ, ܿሻ. ܿଶ

௖

ൌ ሻܩሺ߆ ሺ5ሻ 

ܵ݀ᇱሺܩ, 1ሻ ൌ෍݉ሺܩ, ܿሻ. ሺ|ܧሺܩሻ| െ ܿሻ ൌ ܵ݀ሺܩሻ
௖

ሺ6ሻ 
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,ܩᇱሺߎ 1ሻ ൌ෍݉ሺܩ, ܿሻ. ܿ. ሺ|ܧሺܩሻ| െ ܿሻ
௖

ൌ ሻܩሺߎ ሺ7ሻ 

We encourage the interested readers to consult papers16-18 and 

references therein for more information on Theta index ሺ߆ሻ, Sadhana index 

ሺܵ݀ሻ and Pi index ሺߎሻ and its computational techniques. The first Zagreb 

index have been introduced more than thirty years ago in 1972 by Gutman 

and Trinajstić.19 Recently, the Hyper Zagreb index (HM) and Forgotten 

Zagreb index (F), have been introduced by Shirdel et al.20 and Furtula and 

Gutman21 as the revised version of the first Zagreb index. In fact, they are 

defined as: 

ሻܩሺܯܪ ൌ ෍ ሾ݀݁݃ሺݑሻ൅݀݁݃ሺݒሻሿଶ ሺ8ሻ
௨௩∈ாሺீሻ

 

ሻܩሺܨ ൌ ෍ ሾ݀݁݃ሺݑሻଶ ൅ ݀݁݃ሺݒሻଶሿ
௨௩∈ாሺீሻ

ሺ9ሻ 

Results and Discussion  

Nanostructures of polycyclic aromatic hydrocarbon (PAH) 

derivatives are potential candidates for improving the performance of 

nanoelectronics, optoelectronics, and photovoltaic cells.22-24  Tetracene is 

the four-ringed member of the series of acenes. Tetracene has several 

advantages as a fission material. Figure 1 shows the linear [n]-Tetracene. 

 

Figure 1. The linear [n]-Tetracene. 

Now we compute the closed formula for Omega, Theta, Sadhana, Pi 

polynomials for linear [n]-Tetracene in the following theorems. To do it, at 

first, we should consider the following examples.  
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Example 1. Consider the graph ܶ ൌ ܶሾ2ሿ,  shown in Figure 2. One can see 

this graph has exactly 3 strips ݁ଵ, ݁ଶ	and ݁ଷ. On the other hand |ܥሺ݁ଵሻ| ൌ

|ሺ݁ଶሻܥ| ,10 ൌ 2 and |ܥሺ݁ଷሻ| ൌ 2. Hence, 

,ሺܶߗ ሻݔ ൌ ଵ଴ݔ ൅  ,ଶݔ17

,ሺܶ߆ ሻݔ ൌ ଵ଴ݔ10 ൅  .ଶݔ34

 
Figure 2. The linear [n]-Tetracene, n=2. 

Example 2. Consider the graph ܶ ൌ ܶሾ3ሿ,  shown in Figure 3. One can see 

this graph has exactly 3 strips ݁ଵ, ݁ଶ	and ݁ଷ. On the other hand |ܥሺ݁ଵሻ| ൌ

|ሺ݁ଶሻܥ| ,15 ൌ 2 and |ܥሺ݁ଷሻ| ൌ 2. Hence, 

,ሺܶߗ ሻݔ ൌ ଵହݔ ൅  ,ଶݔ26

,ሺܶ߆ ሻݔ ൌ ଵହݔ15 ൅  .ଶݔ52

  
  Figure 3. The linear [n]-Tetracene, n=3. 

By continuing this method we achieve the graph of linear [n]-

Tetracene. Hence, by computing the number of strips of equal size and 

substitute in the equation (1)-(4) the following theorem can be deduced: 

Theorem 1. Consider the linear [n]-Tetracene (denoted by ܶ ൌ ܶሾ݊ሿ, 

Figure 1). Then, the Omega and its related polynomials of ܶሾ݊ሿ are 

computed as follows: 

,ሺܶߗ ሻݔ ൌ ହ௡ݔ ൅ ሺ9݊ െ 1ሻݔଶ, 

,ሺܶ߆ ሻݔ ൌ ହ௡ݔ5݊ ൅ ሺ18݊ െ 2ሻݔଶ, 

ܵ݀ሺܶ, ሻݔ ൌ ሺ9݊ െ 1ሻݔଶଷ௡ିସ ൅  ,ଵ଼௡ିଶݔ

,ሺܶߎ ሻݔ ൌ ሺ18݊ െ 2ሻݔଶଷ௡ିସ ൅  .ଵ଼௡ିଶݔ5݊

 



                                                   Najmeh Soleimani et al.                                                  127 

 

Proof. To compute the omega and theta polynomials of ܶሾ݊ሿ, it is enough to 

calculate C(e) for every ݁ in ܧሺܶሻ. By Figure 2 and Figure 3, one can see 

that, there are three distinct cases of qoc strips. We denote the 

corresponding edges by ݁ଵ, ݁ଶ	and ݁ଷ. By continuing method it is easy to 

check that	|ܥሺ݁ଵሻ| ൌ |ሺ݁ଶሻܥ| ,5݊ ൌ 2 and	|ܥሺ݁ଷሻ| ൌ 2. On the other hand, 

there are 1, ݊ െ 1 and 8݊ similar edges for each of edges	݁ଵ, ݁ଶ and ݁ଷ, 

respectively. 

So, we have 

,ሺܶߗ ሻݔ ൌ෍݉ሺܶ, ܿሻ. ௖ݔ

௖

 

													ൌ ሺ1 ൈ ହ௡ሻݔ ൅ ൫ሺ݊ െ 1ሻ ൈ ଶ൯ݔ ൅ ሺ8݊ ൈ  ଶሻݔ

													ൌ ହ௡ݔ ൅ ሺ9݊ െ 1ሻݔଶ. 

 

Also, 

,ሺܶ߆ ሻݔ ൌ෍݉ሺܶ, ܿሻ. ܿ. ௖ݔ

௖

 

															ൌ ሺ1 ൈ 5݊ ൈ ହ௡ሻݔ ൅ ൫ሺ݊ െ 1ሻ ൈ 2 ൈ ଶ൯ݔ ൅ ሺ8݊ ൈ 2 ൈ  ଶሻݔ

															ൌ ହ௡ݔ5݊ ൅ ሺ18݊ െ 2ሻݔଶ. 

 

Since, first derivative of omega polynomial (in x=1), equals the number of 

edges in the graph. We have 

,ᇱሺܶߗ 1ሻ ൌ |ሺܶሻܧ| ൌ 23݊ െ 2. 

Thus, we have 

ܵ݀ሺܶ, ሻݔ ൌ෍݉ሺܶ, ܿሻ. ாሺ்ሻ|ି௖|ݔ

௖

 

																	ൌ ൫1 ൈ ாሺ்ሻ|ିହ௡൯|ݔ ൅ ቀሺ݊ െ 1ሻ ൈ ாሺ்ሻ|ିଶቁ|ݔ ൅ ൫8݊ ൈ  ாሺ்ሻ|ିଶ൯|ݔ

																	ൌ ሺ9݊ െ 1ሻݔଶଷ௡ିସ ൅  .ଵ଼௡ିଶݔ
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Also, 

,ሺܶߎ ሻݔ ൌ෍݉ሺܶ, ܿሻ. ܿ. ாሺ்ሻ|ି௖|ݔ

௖

 

															ൌ ൫1 ൈ 5݊ ൈ ாሺ்ሻ|ିହ௡൯|ݔ ൅ ቀሺ݊ െ 1ሻ ൈ 2 ൈ ாሺ்ሻ|ିଶቁ|ݔ

൅ ൫8݊ ൈ 2 ൈ  																							ாሺ்ሻ|ିଶ൯|ݔ

															ൌ ሺ18݊ െ 2ሻݔଶଷ௡ିସ ൅  .ଵ଼௡ିଶݔ5݊

Theorem 2. The Theta index, Sadhana index and Pi index of the linear [n]-

Tetracene are computed as: 

ሺܶሻ߆ ൌ 25݊ଶ ൅ 36݊ െ 4, 

ܵ݀ሺܶሻ ൌ 207݊ଶ െ 41݊ ൅ 2, 

ሺܶሻߎ ൌ 504݊ଶ െ 128݊ ൅ 8. 

Proof. By using equations (5)-(7) and proof of Theorem 1, we are done. 

Now, we consider the vertical Tetracenic nanotube and denote by 

ܩ ൌ ,݌ሾܩ  ሿ. For other related research and historical details, see the paperݍ

series. 25,26  

 

Theorem 3. Let ݌, ݍ ∈ ܰ. Then, the Omega and its related polynomials of 

,݌ሾܩ ,݌∀ሿ  ሺݍ ݍ ൐ 1; ݌4	 ൒ ݍ െ 1ሻ	are given by: 

,ܩሺߗ ሻݔ ൌ ହ௣ݔݍ ൅ ሺݍ െ 1ሻݔସ௣ ൅ 4෍ݔଶ௜
௤ିଵ

௜ୀଵ

൅ ሺ9݌ െ ݍ2 ൅ 2ሻݔଶ௤, 

 

,ܩሺ߆ ሻݔ ൌ ହ௣ݔݍ݌5 ൅ ݍሺ݌4 െ 1ሻݔସ௣ ൅ 4෍2݅ݔଶ௜
௤ିଵ

௜ୀଵ
൅ ሺ18ݍ݌ െ ଶݍ4 ൅ ,ଶ௤ݔሻݍ4

 

ܵ݀ሺܩ, ሻݔ ൌ ଶ଻௣௤ିଽ௣ݔݍ ൅ ሺݍ െ 1ሻݔଶ଻௣௤ି଼௣ ൅ 4෍ݔሺଶ଻௣௤ିସ௣ሻିଶ௜
௤ିଵ

௜ୀଵ
൅ ሺ9݌ െ ݍ2 ൅ 2ሻݔଶ଻௣௤ିସ௣ିଶ௤,
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,ܩሺߎ ሻݔ ൌ ଶ଻௣௤ିଽ௣ݔݍ݌5 ൅ ݍሺ݌4 െ 1ሻݔଶ଻௣௤ି଼௣ ൅ 4෍2݅ݔሺଶ଻௣௤ିସ௣ሻିଶ௜
௤ିଵ

௜ୀଵ
൅ ሺ18ݍ݌ െ ଶݍ4 ൅  .ଶ଻௣௤ିସ௣ିଶ௤ݔሻݍ4

Proof. Let ܩ ൌ ,݌ሾܩ  vertices ݍ݌ሿ be the V-Tetracenic nanotube, with 18ݍ

(notice that the edges in the right side are affixed to the vertex in the left 

side of the figure to gain a tube in this way). First, we compute Omega 

polynomial. By using the cut method and Figure 4, there are some distinct 

cases of qoc strips. We denote the corresponding edges by	݁ଵ, ݁ଶ, ݁ଷ, … , ܿ௤.  

 
Figure 4. The qoc strips of edges ݁ଵ, ݁ଶ, ݁ଷ, ܿଵ, ܿଶ, ܿଷ, ܿସ and	ܿହ in graph of  ܩሾ2,5ሿ. 

Table 1. The number of co-distant edges of V-Tetracenic nanotube. 

Type of Edges |࡯ሺࢋሻ|  ࢓

 ݍ ݌૚ 5ࢋ

ݍ ݌૛ 4ࢋ െ 1 

 ݌ ݍ૜ 2ࢋ

 ࢏ࢉ

࢏∀ ൌ ૚, ૛, … , ࢗ െ ૚ 

2݅ 4 

݌8 ݍ2 ࢗࢉ െ ݍ2 ൅ 2 
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Now, we apply the formula of Omega polynomial to compute this 

polynomial for ܩ. Since 

,ܩሺߗ ሻݔ ൌ෍݉ሺܩ, ܿሻ. ௖ݔ

௖

, 

 by using Table 1, we have 

,ܩሺߗ ሻݔ ൌ ହ௣ݔݍ ൅ ሺݍ െ 1ሻݔସ௣ ൅ ଶ௤ݔ݌ ൅෍4ݔଶ௜
௤ିଵ

௜ୀଵ

൅ ሺ8݌ െ ݍ2 ൅ 2ሻݔଶ௤. 

Also, since 

,ܩሺ߆ ሻݔ ൌ෍݉ሺܩ, ܿሻ. ܿ. ௖ݔ

௖

,							 

we get 

,ܩሺ߆ ሻݔ ൌ ହ௣ݔݍ݌5 ൅ ݍሺ݌4 െ 1ሻݔସ௣ ൅ ଶ௤ݔݍ݌2 ൅෍4 ൈ ଶ௜ݔ2݅
௤ିଵ

௜ୀଵ

൅ ሺ16ݍ݌ െ ଶݍ4 ൅  .ଶ௤ݔሻݍ4

The first derivative (computed at ݔ ൌ 1) of Omega polynomial is 

equal to the number of edges. Therefore, |ܧሺܩሻ| ൌ ݍ݌27 െ  From .݌4

equations (1)-(4), one can obtain the Sadhana polynomial and Pi polynomial 

by replacing ݔ௖ with ݔ|ாሺீሻ|ି௖ in Omega polynomial and Theta polynomial. 

This completes our proof. 

Theorem 4. The Theta index, Sadhana index and Pi index of the V-

Tetracenic nanotube are computed as: 

ሻܩሺ߆ ൌ ݍଶ݌41 ൅ ଶݍ݌36 െ ଶ݌16 െ
8
3
ଷݍ ൅

8
3
 ,ݍ

ܵ݀ሺܩሻ ൌ ݍଶ݌243 ൅ ଶݍ݌108 െ ଶ݌36 െ ݍ݌124 ൅  ,݌16

ሻܩሺߎ ൌ ଶݍଶ݌729 െ ݍଶ݌257 ൅ ଶ݌32 െ ଶݍ݌36 ൅
8
3
ଷݍ െ

8
3
 .ݍ

Proof. By using Table 1 and equations (5)-(7), we are done. 
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In following, we consider the horizontal Tetracenic nanotube and 

denote by ܪ ൌ ,݌ሾܪ  ሿ (Figure 5). The various types of quasi-orthogonalݍ

cuts are drawn by arrows. 

 
Figure 5. The qoc strips of edges ݁ଵ, ݁ଶ, ݁ଷ, ݁ସ, ܿଵ	 and	ܿଷ  in graph of 	ܪሾ3,2ሿ. 

Theorem 5. Let	݌, ݍ ∈ ܰ. Then, the Omega and its related polynomials of 

,݌ሾܪ ,݌∀ሿ  ሺݍ ݍ ൐ 1; ݌4 ൒  :are given by	ሻݍ

,ܪሺߗ ሻݔ ൌ ହ௣ݔݍ ൅ ସ௣ݔݍ ൅ 4 ෍ ௜ݔ
ଶ௤ିଵ

௜ୀଵ
௜ ௜௦ ௢ௗௗ

൅ ሺ9݌ െ ݍ2 െ 1ሻݔଶ௤, 

 

,ܪሺ߆ ሻݔ ൌ ହ௣ݔݍ݌5 ൅ ସ௣ݔݍ݌4 ൅ 4 ෍ ௜ݔ݅
ଶ௤ିଵ

௜ୀଵ
௜ ௜௦ ௢ௗௗ

൅ ሺ18ݍ݌ െ ଶݍ4 െ 	,ଶ௤ݔሻݍ2

 

ܵ݀ሺܪ, ሻݔ ൌ ଶ଻௣௤ିଶ௤ିହ௣ݔݍ ൅ ଶ଻௣௤ିଶ௤ିସ௣ݔݍ ൅ 4 ෍ ሺଶ଻௣௤ିଶ௤ሻି௜ݔ
ଶ௤ିଵ

௜ୀଵ
௜	௜௦	௢ௗௗ

൅ ሺ9݌ െ ݍ2 െ 1ሻݔଶ଻௣௤ିସ௤, 
 

,ܪሺߎ ሻݔ ൌ ଶ଻௣௤ିଶ௤ିହ௣ݔݍ݌5 ൅ ଶ଻௣௤ିଶ௤ିସ௣ݔݍ݌4 ൅ 4 ෍ ሺଶ଻௣௤ିଶ௤ሻି௜ݔ݅
ଶ௤ିଵ

௜ୀଵ
௜ ௜௦ ௢ௗௗ

൅ ሺ18ݍ݌ െ ଶݍ4 െ  .ଶ଻௣௤ିସ௤ݔሻݍ2
 

Proof. Let ܪ ൌ ,݌ሾܪ  vertices ݍ݌ሿ be the H-Tetracenic nanotube, with 18ݍ

and 27ݍ݌ െ  edges (notice that the edges in the top are affixed to the ݍ2
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vertex in the bottom of the figure to gain a tube in this way, see Figure 5). 

By using the cut method and computing the number of co-distant edges of 

ܪ ൌ ,݌ሾܪ  .ሿ, we can fill the Table 2ݍ

Table 2. The number of co-distant edges of H-Tetracenic nanotube. 

Type of Edges |࡯ሺࢋሻ|  ࢓

 ݍ ݌૚ 5ࢋ
 ݍ ݌૛ 4ࢋ
݌ ݍ૜ 2ࢋ െ 1 

࢏ , ࢏ࢉ is odd. 
࢏∀ ൌ ૚, ૜,… , ૛ࢗ െ ૚ 

݅ 4 

݌8 ݍ૝ 2ࢋ െ  ݍ2

By	using	these	calculations,	equations (1)-(4),	the	theorem	is	proved. 

Theorem 6. The Theta index, Sadhana index and Pi index of the H-

Tetracenic nanotube are computed as: 

ሻܪሺ߆ ൌ ݍଶ݌41 ൅ ଶݍ݌36 െ ଶݍ4 െ
8
3
ଷݍ െ

4
3
 ,ݍ

ܵ݀ሺܪሻ ൌ ݍଶ݌243 ൅ ଶݍ݌108 െ ଶݍ8 െ ݍ݌72 ൅  ,ݍ4

ሻܪሺߎ ൌ ଶݍଶ݌729 െ ଶݍ݌144 െ ݍଶ݌41 ൅
8
3
ଷݍ ൅ ଶݍ8 ൅

4
3
 .ݍ

Proof. By using Table 2 and equations (5)-(7), we are done. 

Now,	we	are	ready	to	compute	the	Omega and its related counting 

polynomials	 of	 Tetracenic	 nanotori	 ܭ ൌ ,݌ሾܭ 	,ሿݍ depicted	 in	 Figure	 6.  

The various types of quasi-orthogonal cuts are drawn by arrows. 

 
Figure 6. The qoc strips of edges ݁ଵ, ݁ଶ, ݁ଷ, ܿଵ, ܿଶ and	ܿଷ in graph of ሾ4, 3ሿ. 
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Theorem 7. Let	݌, ݍ ∈ ܰ. Then, the Omega and its related polynomials of 

,݌ሾܭ ,݌∀ሿ  ሺݍ ݍ ൐ 1; ݌4 ൒ ݍ െ 1ሻ	are given by: 

,ܭሺߗ ሻݔ ൌ ହ௣ݔݍ ൅ ସ௣ݔݍ ൅ 4෍ݔଶ௜
௤ିଵ

௜ୀଵ

൅ ሺ9݌ െ ݍ2 ൅ 2ሻݔଶ௤, 

 

,ܭሺ߆ ሻݔ ൌ ହ௣ݔݍ݌5 ൅ ସ௣ݔݍ݌4 ൅ 4෍2݅ݔଶ௜
௤ିଵ

௜ୀଵ

൅ ሺ18ݍ݌ െ ଶݍ4 ൅  ,ଶ௤ݔሻݍ4

ܵ݀ሺܭ, ሻݔ ൌ ଶ଻௣௤ିଽ௣ݔݍ ൅ ଶ଻௣௤ି଼௣ݔݍ ൅ 4෍ݔሺଶ଻௣௤ିସ௣ሻିଶ௜
௤ିଵ

௜ୀଵ
൅ ሺ9݌ െ ݍ2 ൅ 2ሻݔଶ଻௣௤ିସ௣ିଶ௤, 

 

,ܭሺߎ ሻݔ ൌ ଶ଻௣௤ିଽ௣ݔݍ݌5 ൅ ଶ଻௣௤ି଼௣ݔݍ݌4 ൅ 4෍2݅ݔሺଶ଻௣௤ିସ௣ሻିଶ௜
௤ିଵ

௜ୀଵ
൅ ሺ18ݍ݌ െ ଶݍ4 ൅  .ଶ଻௣௤ିସ௣ିଶ௤ݔሻݍ4

 

Proof. Let ܭ ൌ ,݌ሾܭ  vertices and ݍ݌ሿ be the Tetracenic nanotori, with 18ݍ

 edges. The proof can be done in the same way as in the proof of ݍ݌27

Theorem 3. 

Table 3. The number of co-distant edges of Tetracenic nanotori. 

Type of Edges |࡯ሺࢋሻ| ࢓ 

 ݍ ݌૚ 5ࢋ

 ݍ ݌૛ 4ࢋ

 ݌ ݍ૜ 2ࢋ

 ࢏ࢉ
࢏∀ ൌ ૚, ૛,… , ࢗ െ ૚ 

2݅ 4 

݌8 ݍ2 ࢗࢉ െ ݍ2 ൅ 2

        The results of the above theorem can be summarized as follows: 

Theorem 8. The Theta index, Sadhana index and Pi index of the Tetracenic 

nanotori are computed as: 



134                         Some formulas for the polynomials and topological … 

 

ሻܭሺ߆ ൌ ݍଶ݌41 ൅ ଶݍ݌36 െ
8
3
ଷݍ ൅

8
3
 ,ݍ

ܵ݀ሺܭሻ ൌ ݍଶ݌243 ൅ ଶݍ݌108 െ  ,ݍ݌81

ሻܭሺߎ ൌ ଶݍଶ݌729 െ ݍଶ݌41 െ ଶݍ݌36 ൅
8
3
ଷݍ െ

8
3
 .ݍ

Finally, we calculate the Hyper Zagreb index and forgotten Zagreb 

index of nanostructures by use an algebraic method. 

Theorem 9. The Hyper Zagreb index and forgotten Zagreb index of 

nanostructures are computed as: 

Nanostructure ࡲ ࡹࡴ 

ݍ݌972 ࡳ െ ݍ݌486 ݌320 െ  ݌152

ݍ݌972 ࡴ െ ݍ݌486 ݍ124 െ  ݍ76	

 ݍ݌486 ݍ݌972 ࡷ

 

Proof. For computing the Hyper Zagreb index and forgotten Zagreb index 

of nanostructures (ܩሾ݌, ,ሿݍ ,݌ሾܪ ,݌ሾܭ ሿ andݍ  ሿ) we consider three typeݍ

edges, (a) edge ܧଵ with ended vertices of degree 2 and 2, (b) edge ܧଶ with 

ended vertices of degree 2 and 3, (c) edge ܧଷ with ended vertices of degree 

3 and 3. The obtained data is arranged in Table 4. 

Table 4. Computing the number of edges in nanostructures. 

Nanostructure |૚ࡱ| |૛ࡱ|  |૜ࡱ|

݌16 0 ܩ ݍ݌27 െ  ݌20

ݍ݌27 ݍ4 ݍ2 ܪ െ  ݍ8

 ݍ݌27 0 0 ܭ

Using the data given by Table 4, the Hyper Zagreb and forgotten 

Zagreb indices are calculated. 
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Examples 

In this section, we give some examples in the following tables. In 

fact, we obtain some topological indices of nanostructures by replacing 

different number of p and q. 

Table 5. Some values of the topological indices of V-Tetracenic nanotube. 

ሻࡳሺࡹࡴ ሻࡳሺࢰ ሻࡳሺࢨ ሻࡳሺࢊࡿ ࢗ ࢖  ሻࡳሺࡲ

2 2 2200 536 9464 3248 1640 

2 3 4004 1012 22704 5192 2612 

2 4 6240 1584 41680 7136 3584 

2 5 8908 2236 66408 9080 4556 

 

Table 6. Some values of the topological indices of H-Tetracenic nanotube. 

ሻࡴሺࢊࡿ ࢗ ࢖ ሻࡴሺࡹࡴ ሻࡴሺࢰ ሻࡴሺࢨ  ሻࡴሺࡲ

3 2 5214 1130 23834 5584 2764 

3 3 8769 1967 54202 8376 4146 

3 4 12956 2964 96892 11168 5528 

3 5 17775 4105 151920 13960 6910 

 

 Table 7. Some values of the topological indices of Tetracenic nanotori. 

ሻࡷሺࢊࡿ ࢗ ࢖	 ሻࡷሺࡹࡴ ሻࡷሺࢰ ሻࡷሺࢨ  ሻࡷሺࡲ

4 2 8856 1872 44784 7776 3888 

4 3 14580 3200 101776 11664 5832 

4 4 21168 4768 181856 15552 7776 

4 5 28620 6560 285040 19440 9720 
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Conclusions 

In theoretical chemistry, molecular structure descriptors are used to 

compute properties of chemical compounds. Among topological descriptors, 

topological indices play significant roles in anticipating chemical 

phenomena. This article is the continuation of the work26, which were 

provided general partitions of co-distant edges of nanostructures. We used 

these partitions to computed topological indices of linear [n]-Tetracene, 

vertical and horizontal Tetracenic nanotube and nanotori. 
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