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INTRODUCERE

In atmosfera Pamantului ajung numerosi compusi organici volatili care nu fac
parte din compozitia sa naturala (Graedel et al., 1986; Hobbs, 2000). Acestia
sufera procese de oxidare fie aproape de sursa de emisie, fie in straturile
superioare. Atmosfera actioneazd ca un mediu oxidant, eliminand acesti
compusi prin reactii cu radicalii troposferici si sub influenta radiatiei solare
(Burkholder et al., 2015). Reactiile atmosferice sunt complexe si depind de
structura chimica a compusilor, conditiile meteorologice, prezenta aerosolilor
si capacitatea radiativa (IPCC, 2013). Desi exista reactii nocturne initiate de
radicalii NOs, fotochimia este o fortda majorda in procesele atmosferice
(Kiendler-Scharr et al., 2023). Radiatia solara, in functie de lungimea de unda,
genereaza radicali care declanseaza reactii de oxidare si influenteaza
compozitia atmosferei.

Majoritatea activitatilor din viata de zi cu zi au ca rezultat eliberarea
de specii organice in atmosfera. Deplasarile cu masina, intretinerea
gospodariilor, pregatirea hranei zilnice, petrecerea timpului cu prietenii la un
gratar, intretinerea peluzei/gazonului, cultivarea nutreturilor vegetale pentru
animale si chiar procesele simple esentiale vietii au ca efect emisii
semnificative de compusi organici in atmosfera (COV)(Fraser et al., 1998;
Fortmann et al., 1998; Kirstine et al., 1998; Fall et al., 1999; Andreae si Merlet,
2001; Barker et al., 2006). Vegetatia elibereaza la randul ei cantitati mari de
COV, mai ales in procesele de evolutie si degradare (Finlayson-Pitts si Pitts,
2000). Emisiile de compusi organici volatili biogeni depasesc cu un ordin de
marime pe cele ale compusilor organici volatili datorate activitdtilor umane
(Guenther et al., 2012).

Studiile in fazd gazoasa necesitd infrastructura adecvata. Camerele de

simulare atmosfericd sunt esentiale pentru cercetarea reactiilor chimice si



fizice In atmosfera. Acestea permit controlul compusilor si al parametrilor
oxidativi, facilitand analiza formarii si evolutiei poluantilor (Kiendler-Scharr
et al., 2023). Ele permit studierea interactiunii dintre COV, radiatia solara si
conditiile meteorologice, contribuind la identificarea surselor de emisii si la

elaborarea de scenarii si prognoze.

OBIECTIVELE TEZEI DE DOCTORAT

Teza de doctorat cu tema ,,Studiul degraddirii atmosferice a unor esteri
nesaturati’, are la baza obiectivele:

1)  investigarea unei serii de sapte esteri ai cis-3-hexenilului: formiat,
acetat, izobutirat, 3-metil butanoat, hexanoat, cis-3-hexenoat respectiv
benzoat;

i1)  determinarea coeficientilor de vitezd pentru reactiile esterilor de cis-3-
hexenil cu radicalii OH, respectiv ozonul,

i1)  evaluarea impactului degradarii atmosferice a esterilor de cis-3-
hexenil lor asupra atmosferei;

1v)  estimarea timpilor medii de viatd atmosferica ai acestor estert;

v)  evaluarea potentialului lor de a contribui la formarea ozonului
troposferic;

Vi) aplicarea si  evaluarea metodelor SAR (Structure—Activity
Relationship) pentru estimarea constantelor de viteza, prin comparatie
cu datele experimentale;

vil)  extinderea cunostintele existente privind comportamentul atmosferic

al acestor compusi.

Teza de doctorat are continutul distribuit in 165 pagini si include 57
figuri si 28 tabele. Rezultatele prezentate constituie subiectul a doud articole

stiintifice publicate in calitate de autor principal in jurnale cu factor de impact



(2,7 s1 2,7), situate 1n cvartila Q2 (galben) In baza de date Web of Science
(Mairean et al., 2024; 2025). Parte dintre rezultate au fost diseminate in cadrul

unor conferinte organizate la nivel national (4).

PARTEA A II-A: CONTRIBUTII PERSONALE

IL.1 PARTE EXPERIMENTALA

1.7.1.1. Reactorul ESC-Q-UAIC

Camera de simulare atmosfericd ESC-Q-UAIC are o capacitate cilindrica de
760 + 2 litri si este compusd din trei tuburi de cuart unite prin doud flange
interne, cu un diametru de 0,488 metri si o lungime totald de 4,2 metri. (Figura
1.17.). Reactorul este inchis la capete cu alte doua flanse din aluminiu. Flansa
principald (de admisie) este echipatd cu un manometru pentru monitorizarea
presiunii si un termocuplu pentru masurarea temperaturii din interiorul
camerei. Pe flansele exterioare sunt montate oglinzile care formeaza sistemul
de multireflexie de tip White, avand un drum optic maxim de 492 + 0,2 metri

in domeniul IR.

Figura 1.17. Camera de reactie ESC-Q-UAIC si flansa de admisie a camerei
de reactie

Avand in vedere ca instrumentul analitic central este un spectrometru
IR, nivelul vaporilor de apa din camera trebuie sa fie extrem de scazut.

Trecerea fasciculului de radiatie IR 1n camera de reactie se realizeaza prin
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doud fante echipate cu o fereastrd de KBr transparentd pentru radiatia din
domeniul infrarosu. Ferestrele prin care radiatia IR pétrunde in reactor sunt
confectionate din KBr. Evacuarea si curdtarea camerei se efectueaza prin
intermediul unei pompe de vid care asigurd o presiune minimi de 1 x 107
mbar si un debit de 55 m*/h. Aerul uscat (punct de roud ~ -70°C) introdus in
incinta camerei de reactie provine fie de la o butelie cu aer comprimat, fie este
generat cu ajutorul unui compresor.

Energia necesard desfasurarii reactiilor fotolitice este asiguratd de un
ansamblu de 64 de lampi distribuite uniform in jurul tuburilor de cuart: 32 de
lampi superactinice de tip Philips TL-DK 36W, utilizate pentru fotoliza in
domeniul vizibil (Amax = 365 nm), si 32 de lampi germicidale de tip Philips
UV-C TUV 30W/G30 T8, destinate fotolizei in domeniul UV (Amax = 253,7
nm). Pentru asigurarea omogenizarii amestecului gazos de reactie, sunt
utilizate doud ventilatoare cu palete din teflon, montate in interiorul camerei
de reactie: unul pozitionat pe flansa externd principala si celdlalt pe una

dintre cele doua flanse interioare.

1.7.1.2. Spectroscopie FT-IR. Spectrometrul IR cu drum optic marit

Spectrofotometrul FT-IR de 1naltd rezolutie Bruker, model Vertex 80 (Figura
1.20.), este utilizat pentru studiile de atmosfera simulatd. Acesta este conectat
la reactorul ESC-UAIC printr-un sistem optic de oglinzi, care directioneaza
radiatia infrarosie in interiorul camerei reactorului, facilitind monitorizarea in
timp real a analitilor in fazd gazoasa. Spectrofotometrul FT-IR utilizeaza
radiatia din domeniul infrarosu pentru identificarea si cuantificarea
reactantilor organici prezenti in faza gazoasa, prin aplicarea legii de absorbtie
Lambert-Beer. Aceastd tehnica permite o discriminare precisd a compusilor
analizati, contribuind la o Intelegere detaliata a proceselor chimice care au loc

1n atmosfera.



Figura 1.20. Spectrofotometrul FT-IR de rezolutie inaltd Bruker, model
Vertex 80

Radiatia infrarogie este generatd de un filament din carburd de siliciu,
provenind fie de la o sursd internd MIR, fie de la o sursd externd Globar.
Divizorul de fascicul este realizat dintr-o fereastra transparentd pentru
radiatia IR, confectionatd din bromurd de potasiu. Langd spectrofotometru
este amplasatd o cutie de cuplare cu reactorul ESC-Q-UAIC, care contine
detectorul extern MCT (Mercur-Cadmiu-Telur), functional la temperatura
azotului lichid, precum si un sistem optic de oglinzi ce directioneaza
fasciculul IR 1n camera de reactie.

Spectrele IR obtinute in general prin compunerea a 114 interferograme
sunt inregistrate cu o rezolutie spectrald de 1 cm™, la o frecventd de achizitie
de 60 kHz, in domeniul 700-4000 cm™'. In aceastd configuratie, timpul
necesar pentru achizitia unui spectru IR este de 60 de secunde. La inceputul
fiecdrui experiment, se inregistreazd spectrul de referintd (background),
compus din 524 de interferograme, precum si un spectru de control, utilizat

pentru a evalua prezenta compusilor organici volatili in reactor.

1.7.1.3. Analiza particulelor. Discriminatorul si numaratorul de particule
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Scanning Mobility Particle Sizer - Condensation Particle Counter (Figura
1.21.), cunoscut sub denumirea de SMPS, este un contor de particule cuplat cu
un clasificator de masa, care ajutd la identificarea distributiei numerice a
aerosolilor formati, tindnd cont de masa acestora (utilizand o sursa inchisa de
ionizare). Instrumentul este esential In monitorizarea fazelor de formare a
aerosolilor organici secundari.

Discriminatorul de particule este echipat cu un analizor TSI, capabil sa
separe aerosoli cu diametre cuprinse intre 1 si 982 nm. In interiorul acestui
sistem se afld o tijd metalica prin care circuld un curent electric, iar variatiile
de tensiune din conductor faciliteaza separarea particulelor Incarcate
electrostatic din proba de gaz. Procesul de separare utilizeazd o sursa
radioactiva bazata pe izotopi de 85Kr, avand o activitate initiala de 370 MBq.

Dupa separare, contorul de particule TSI, model 3787, ofera informatii
privind numarul de particule din sistemul gazos, utilizand o sursd de lumina si
un detector optic. Contorul poate functiona in doua configuratii, la un debit de
prelevare de 0,6 L/min si 1,5 L/min. Domeniul de diametre detectabile depinde

de setarile instrumentului si de limitarile acestuia.

Figura 1.21. Discriminatorul si numaratorul de particule SMPS-CPC
(producator TSI, SUA)
Distributiile particulelor formate in reactorul ESC-Q-UAIC sunt

inregistrate online la un debit de prelevare de 0,6 L/min si un debit de dilutie
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de 2,7 L/min, la fiecare 110 secunde, cu o pauza de 10 secunde intre probe.
Aceasta setare permite evaluarea aerosolilor cu diametre cuprinse intre 16,3
nm si 710,5 nm, pentru o gami de concentratii de 0,2-15,0 x 10'* molecule
cm>. Pe baza distributiilor de particule in functie de diametru si a
concentratiilor numerice asociate, se poate determina volumul total si,

implicit, masa totald a aerosolilor formati in conditiile experimentale stabilite

pentru reactorul ESC-Q-UAIC.

I1.1. Studiile cinetice In faza gazoasd in atmosfera simulata utilizind
camera de reactie ESC-Q-UAIC
Procedura pentru un experiment tipic a implicat urmatoarele etape:

1) Introducerea compusilor in reactor;

2) Omogenizarea amestecului gazos;

3) Determinarea pierderii la perete;

4) Determinarea constantei de fotoliza;

5) Initierea reactiei in faza gazoasa.

I1.2. Determinarea constantei de vitezi de reactie in faza gazoasa a
acetatului de n-butil cu radicalii OH
Primul studiu desfasurat in conditii de atmosfera controlatd a vizat
determinarea experimentald a constantei de viteza pentru reactia acetatului de
n-butil (n-BuAc) cu radicalii OH (Mdirean et al., 2020). Acest studiu a vizat
validarea protocolului experimental pentru degradarea esterilor in conditii de
atmosfera controlata.

Acetatul de n-butil a fost ales ca model datoritd abundentei studiilor
existente realizate de diverse grupuri de cercetare, care dispun de infrastructuri

complementare pentru analiza reactivitatii compusilor organici volatili in faza
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gazoasa (Hartmann et al., 1986; Wallington et al., 1988; Williams et al., 1993;
Ferrari et al., 1996; Picquet et al., 1998).

Din punct de vedere metodologic, s-a utilizat metoda cinetica relativa
pentru determinarea constantei de viteza a reactiei dintre n-BuAc si radicalii
OH 1n faza gazoasa. Experimentele au fost efectuate in camera ESC-Q-UAIC,
la o temperatura de (298 + 2) K si o presiune de (1000 = 5) mbar, utilizand aer
sintetic. Compusii de referinta selectati pentru acest studiu au fost acroleina,
p-xilenul, benzenul si di-metil eterul (DME).

Dependentele cinetice ale reactiei in faza gazoasa a radicalilor OH cu
n-BuAc fatda de compusii de referintd utilizati in acest studiu obtinute
experimental prin analiza spectrala FT-IR, sunt prezentate in Figura I1.3.
Studiul comparativ al datelor obtinute (Tabelul II.1) in prezentul studiu cu
datele din literatura (Tabelul 11.2.) evidentiaza faptul ca valorile constantelor
de viteza pentru reactia acetatului de n-butil cu radicalii OH sunt in buna

concordanta cu valorile raportate anterior.

<& n-BuAc vs benzen
@ n-BuAcvs DME
12F v n-BuAcvs p-xilen
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Figura II.3. Dependentele cinetice corespunzdtoare reactiei n-BuAc cu
radicalii OH determinate relativ la referentii utilizati in studiul actual: (V) p-

xilen, (¢) benzen, (A) acroleini si (@) DME.

13



Tabel I1.1: Constantele de viteza a reactiei acetatului de n-butil cu radicalii
OH determinate in conditiile camerei de reactiec ESC-Q-UAIC (Mairean et
al., 2022a).

Compus Referinti 12 L
pu elferinta klx 10 kl (mediu)x 10
3 1 -1 3 Al -l
(cm molecule s ) (cm molecule s )
dimetil eter 451+0,28
i p-xilen 3,92+0,18
n-BuAc benzen 3,96 + 0,21 USRS
acroleind 3,84 £ 0,27

I1.4. Evaluarea constantelor de reactie in faza gazoasa a esterilor cis-3-
hexenilici cu radicalii OH

Evaluarea constantelor de reactie ale acestor compusi cu radicalii OH in faza
gazoasa este esentiald pentru intelegerea mecanismelor de degradare
atmosferica, a persistentei lor Tn mediu si pentru evaluarea impactului asupra
calitatii aerului si sdnatatii umane. Studiul cinetic al reactiilor dintre radicalii
OH si esterii cis-3-hexenilici poate oferi informatii valoroase privind
reactivitatea, produsii intermediari formati si cdile predominante de reactie,
contribuind astfel la dezvoltarea unor modele atmosferice predictive.

Din punct de vedere analitic, reactiile dintre radicalii OH si esterii Cis-
3-hexenilici 1n faza gazoasa au fost monitorizate cu ajutorul tehnicii FT-IR si
investigate folosind metoda cinetica relativd. Aceastd metodd presupune
folosirea unui compus de referintd cinetica, a carui constanta de reactie este
foarte bine cunoscuta in literatura.

Radicalii OH au fost generati in situ prin fotoliza la 365 nm a nitritului
de metil (CHsONO) sau a nitritului de izopropil ((CH3)2CHONO). Tn plus,
conditiile scdzute in NOx au fost obtinute prin fotoliza peroxidului de
hidrogen (H20>) la 254 nm. Cel mai utilizat precursor a fost nitritul de metil
deoarece fotoliza acestuia a fost studiata intens (Taylor et al. 1980; Atkinson
et al. 1981).
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Secventa urmatoare de reactii prezintd reactiile care au loc in faza
gazoasa, in camera de reactie, in timpul reactiilor dintre esterii cis-3-hexenilici

si radicalii OH (Mairean et al., 2024):

ester + OH — produsi, Kester
referintd + OH — produsi, krer
ester — produsi, Kester, wi
referinta — produsi, krer, wi
ester + hv (365/254 nm) — produst, Kester, s
referinta + Av (365/254 nm) — produsi, kret, s

Ecuatia IL.5., derivatd din integrarea ecuatiilor cinetice, evalueaza
raportul constantelor de vitezd de reactie pentru esterii investigati in
comparatie cu compusii de referinta:

<[ester]t0
n | ——-to

[ester]t> - kester,WL/](t - to)

Ec. ILS.

_ kegter (l [referintd],,

—k t—t
[referinti], =~ wi/( 0))

- kRef

Reprezentarea grafica individuala a In([ester]tw/[ester]t) - Kester,wLs (t-
to) in functie de In([referinta]w/[referintd]t) pentru fiecare ester cis-3-hexenilic
si compusul de referinta ar trebui sa ofere o linie dreapta cu o pantd egald cu
Kester/Kref. Constanta de vitezd a reactiei, kester, poate fi calculatd folosind
constanta de vitezd cunoscuta pentru compusul de referintd, krer.

Pentru fiecare ester nesaturat s-au efectuat minimum trei experimente,
folosind cel putin doi compusi de referinta pentru determinarea constantei de
viteza. Pierderea pe peretii reactorului, exprimata prin constanta de pierdere la
perete, kwr, a fost calculata si introdusd in calcule pentru corectarea
consumului total al compusilor investigati.

Pentru determinarea constantelor de viteza ale reactiilor dintre radicalii
OH si esterii cis-3-hexenil, au fost utilizati urmatorii compusi de referinta:

izopren, E-2-butena, ciclohexena si 1,3,5-trimetilbenzenul si propena.
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Datele experimentale indica faptul ca expunerea unica in faza gazoasa
a esterilor de cis-3-hexenil si a compusilor de referinta la radiatia luminoasa
de 365 nm nu produce un consum suplimentar notabil. Tn schimb, fotoliza sub
radiatia de 254 nm a determinat un consum Suplimentar pentru anumiti
compusi. In acest caz, s-a observat o scidere de (11,76 = 1,07) x 105 s pentru
1,3,5-trimetilbenzen si de (21,48 = 1,95) x 107 s pentru benzoatul de cis-3-
hexenil. Pentru ceilalti compusi de referinta, datele cinetice obtinute nu au
evidentiat un consum suplimentar datorat fotolizei, rezultate consistente cu
datele existente in bazele de date spectrale UV-Vis (Keller-Rudek et al., 2013).

Datele cinetice obtinute In urma investigatiilor efectuate asupra
reactiilor radicalilor OH cu esterii cis-3-hexenilici, reprezentate grafic
conform ecuatiei IL.5., sunt prezentate in Figurile 11.7.(1-7). Tabelul 11.7.
prezintd valorile constantelor de reactie, obtinute experimentale obtinute 1n
cadrul prezentului studiu. A fost realizata o analizad de regresie liniara pentru
a determina raportul constantelor de viteza kester/Kref si incertitudinile asociate
acestuia, exprimate ca intervale de incredere la nivelul 2c. Valorile absolute
ale coeficientilor de viteza ai reactiei esterilor (Kesteri) au fost calculate prin
multiplicarea raportului determinat experimental cu constanta de viteza
cunoscuta a reactiei compusului de referintd cu radicalii OH (KRefi).
Incertitudinile constantei de viteza kester,i au fost calculate utilizand Ecuatia
[1.6., prin metoda propagdrii erorilor, ludnd in considerare valoarea 2c
obtinuta din analiza regresiei liniare si incertitudinea asociatd constantei de
viteza a compusului de referinta (i).

Valorile finale ale constantelor de viteza Kester+oH, COrespunzatoare
reactiilor esterilor nesaturati cu radicalii OH, determinate in conditii
experimentale de NOx ridicat sau NOx scazut, au fost calculate utilizand o
metoda a mediilor ponderate, conform Ecuatiei I1.7., incluzand propagarea

incertitudinilor asociate valorilor krer. Valoarea pentru Kester,i a fost evaluata
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conform Ecuatiei 11.8., in raport cu fiecare compus de referinta. Incertitudinile
pentru valorile Keester+or) au fost estimate folosind Ecuatia 11.9.

Valorile experimentale determinate pentru constantele vitezei de
reactie dintre radicalii OH si esterii cis-3-hexenilici investigati in prezentul
studiu sunt comparabile cu constanta vitezei de reactie a cis-3-hexenei, care
este de (6,27 = 0,66) x 107" cm® molecule™ s'. Aceastd similitudine
sugereaza faptul ca mecanismul dominant al reactiei dintre esterii nesaturati si

radicalii OH este aditia la legatura dubla.
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Figurile I1.7. (1-7). Reprezentarea grafica a cineticii relative a esterilor de cis-
3-hexenil referinte (simbolurile goale corespund conditiilor scazute de NOx
iar simbolurile pline conditiilor ridicate de NOx).

Valorile experimentale obtinute au permis stabilirea urmatoarei
tendinte de reactivitate redata si in Figura I1.10 (Mairean et al., 2024):
benzoat de cis-3-hexenil < formiat de cis-3-hexenil = acetat de cis-3-hexenil
< izobutirat de cis-3-hexenil < 3-metil butanoat de cis-3-hexenil < hexanoat
de cis-3-hexenil << cis-3- hexenoat de cis-3-hexenil.
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Figura II.10. Reprezentarea graficd a tendintei reactivitdtii esterilor cis-3-
hexenilici nesaturati fatd de radicalii OH in faza gazoasa, la temperatura de
298 K si presiune atmosferica. Datele experimentale prezentate in acest studiu
sunt marcate cu simbolul (®). Nota: pentru scopuri comparative in figura sunt
incluse date din literatura de specialitate, respectiv din studiile lui Atkinson et
al., 1995 (A) si Rodriguez et al., 2015 (o).
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Tabel I1.7: Rezultatele studiului cinetic in faza gazoasa al reactiilor radicalilor OH cu esterii Cis-3-hexenilici investigati,
utilizand diferiti compusi de referinta.

kester,ixloll k(ester+0H)><10ll k(ester+OH)(av )>< 1011
Compus Conditii Compusv de Kester/Kref )
referinta
(cm® molecule! s1)
formiat de cis-3-hexenil .. izopren 0,42+ 0,01 4,20+ 0,65
NOx t 413+04 13 £0,
(Z3HF) Ovridicat 1750 tona 0,64 0,03 | 4,06 +0,63 3+0,45 413 £0,45
L izopren 0,43 +0,03 4,32 +£0,70
NOx ridicat 4,30 +£0,49
acetat de cis-3-hexenil e E-2-butend 0,68 + 0,04 4,28 £0,69 4,19 + 0,38
(Z3HAc) INO. scizut izopren 0,41 +0,05 |4,11+0,81 4044 0.58 ’ i
*SCAZUL B butena 0,63+0,09 | 3,96+ 0,84 : :
i + +
‘ . . NOx ridicat izopren _ 0,48 +£0,04 4,78 + 0,82 4794057
izobutirat de cis-3-hexenil E-2-butend 0,76 £ 0,05 4.81+0,79 4.84 + 0.39
(Z3HiB) NO. scizut izopren 0,50 +0,45 |4,96+0,77 . ’ ’
* E-2-butend 0,76 + 0,03 4,81 +0,75 ’ ’
3-metil butanoat de cis-3-hexenil . izopren 0,53 +£0,03 5,31 +0,84
NOx t 5,39+ 0,61 ,39 £ 0,
(Z3H3MeB) S0 ["E2 butena 0872005 |547+087 5,39 0,61
-trimeti + +
- NOx ridicat 1,3,5 trlm?tll benzen | 1,17 +£0,08 6,84 £1,12 6.60 +0.76
hexanoat de cis-3-hexenil E-2-butena 1,02 + 0,05 641 +1,02 7,00 £ 0,56
(Z3HH) NO. scizut 1,3,5-trimetil benzen | 1,29+0,06 | 7,54+1,19 748 4 0.84 > ?
R 1174006 | 741 1,17 =D
cis-3-hexenoat de cis-3-hexenil L 1,3,5-trimetil benzen | 1,80 =0,07 10,54 + 1,64
NOx ridicat ~ [— 10,58 + 1,40 10,58 + 1,4
(Z3HZ3H) et i clohexena 1,58+0,07 | 10,68 2,72 0,58 = 1,40
1,3,5-trimetil benzen | 0,58 = 0,02 3,43 +0,52
b de cis-3-h 1 NOx ridicat ciclohexena 0,51 £0,01 3,43 £0,86 3,33+0,34
enzoat de c(’;;}iBez’;em propena 131+0,08 |3,20+0,52 3,41 +0,28
NOx scazut ciclohexena 0,49 +£0,03 3,33 +0,85
- 3,57 +0,47
E-2-buten 0,58 +0,02 |3,67+0,57
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Variatia reactivitdtii OH pentru esterii saturati este influentata in cadrul
acestei serii de cresterea catenei de carbon, rezultand multiple centre de
eliminare a atomilor de hidrogen din molecule. Reactivitatea scazuta a
benzoatului de cis-3-hexenil in aceasta serie, poate fi explicata prin efectul
electromer atragator de electroni exercitat de gruparea esterica asupra
nucleului aromatic. Acest fenomen, specific substituentilor aromatici de tip 11,
reduce puternic reactivitatea fatd de radicalii OH, similar altor compusi
aromatici dezactivati (de exemplu, nitrofenolii sau nitrocatecolii, conform
Bejan et al., 2007; Roman et al., 2022). Tn acest context, reactivitatea
benzoatului fatd de OH devine comparabila cu cea a nitrobenzenului ((1,40 +
0,49) x 107"* cm® molecule™® s™! (Witte et al., 1986; Calvert et al., 2002),
indicand o contributie neglijabila la reactivitatea globala observatd. Doar
efectul inductiv, singur, nu ar putea explica in mod adecvat diferentele de
reactivitate fatd de radicalii OH intre acesti compusi, deoarece aceasta scade
exponential in intensitate cu fiecare atom de carbon care se indeparteaza de
gruparea functionala.

Comparand izobutiratul si 3-metil butanoatul de cis-3-hexenil, s-a
observat o crestere a constantei de viteza de reactie cu aproximativ 0,5 x 107!
cm?® molecule™ s! pentru fiecare atom secundar de carbon (-CH.-) adiugat.
Prin urmare, avand in vedere reactivitatea acetatului de cis-3-hexenil, de (4,2
+0,5) x 10 cm® molecule? s, putem estima ci constanta de viteza de reactie
a hexanoatului de cis-3-hexenil ar trebui si fie in jur de 6,2 x 10! cm?®
molecule™ s, valoare apropiati celei determinate experimental.

Adaugarea unui atom de carbon tertiar (>CH-) in cazul izobutiratului
fatd de acetatul de cis-3-hexenil a contribuit la o crestere a reactivitatii cu
aproximativ 0,6 x 107'' cm® molecule s'. Nu se observd un efect
semnificativ pentru gruparea —CHz atunci cand se compara reactivitatea

formiatului de cis-3-hexenil cu cea a acetatului de cis-3-hexenil. Analiza
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diferentei dintre hexanoatul si cis-3-hexenoatul de cis-3-hexenil permite
estimarea contributiei celei de-a doua duble legdturi la reactivitatea totala,
evaluata la aproximativ 3,0 x 10" cm® molecule™" s™'. Tn conformitate cu
ipotezele derivate din valorile experimentale ale coeficientilor de viteza de
reactie, pentru pentanoatul de cis-3-hexenil si metil-pentanoatul de cis-3-
hexenil, constantele de viteza de reactie estimate in faza gazoasa cu radicalii
OH pot fi de aproximativ 5,7 x 10! cm® molecule s, respectiv 5,8 x 1071
cm?® molecule s. Compararea rezultatelor prezente cu date din literatura de
specialitate (Ren et al., 2019; Sun et al., 2016) evidentiaza tendinte similare in
reactivitatea fatd de radicalii OH a metacrilatilor si esterilor cis-3-hexenilici.

O diferentd medie de aproximativ 0,5 x 107! cm® molecule™' s™! a fost
observata in studiile comparative pentru esterii cu catene carbonice succesive,
subliniind consistenta acestei tendinte 1n serii similare. Diferenta
semnificativi intre cis-3-hexenol si hexanol (aproximativ 9,5 x 107! cm?
molecule™ s™!) reflectd contributia majora a aditiei radicalilor OH la dubla
legdtura, cu formarea radicalilor f-hidroxi, mecanism confirmat si de studiile

teoretice (Sun et al., 2016).

11.4.2. Estimarea reactivititii esterilor cis-3-hexenilici cu radicalii OH pe
baza relatiei dintre structura si reactivitate conform modelelor SAR

In acest studiu, constantele de vitezd pentru reactiile in fazi gazoasi ale
esterilor cis-3-hexenilici cu radicalii OH au fost estimate folosind patru
abordari bazate pe metodele SAR (Structure-Activity Relationship): modelul
propus de Kwok si Atkinson (1995), programul EPI Suite AOPWIN dezvoltat
de catre Agentia de Protectie a Mediului din Statele Unite ale Americii,
program care are la bazd algoritmul si factorii propusi de catre Kwok si

Atkinson (1995), modelul poli-alchenelor propus de Peeters et al. (2007) si
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modelul propus de Jenkin et al. (2018a) completat ulterior de Jenkin et al.
(2018b).

Tabelul 11.9. prezinta valorile constantelor calculate conform
metodelor SAR mentionate anterior pentru seria de esteri nesaturati
considerate Tn acest studiu. Tabelele 11.10-I1.13. detaliaza procedura de
calculare a ksar pentru fiecare ester cis-3-hexenilic utilizdnd metodologiile
mentionate. S-a adaugat aceastd contributie la valoarea totala estimatd a
ramurii alifatice, conform metodologiei SAR corespunzatoare. Contributia
este minord, reprezentand mai putin de 2% din coeficientul total al constantei
de viteza de reactie la 298 K (Mairean et al. 2024).

Analiza contributiei canalului de reactie prin eliminarea atomului de
hidrogen de catre radicalii OH, conform metodelor SAR utilizate, releva ca
aceasta reprezintd aproximativ 21% din reactivitatea globald conform
metodologiei lui Jenkin et al. (2018a; 2018b) si aproximativ 9% potrivit
metodei Kwok si Atkinson (1995). In general, metoda Jenkin et al. oferd
estimari mai precise in cazul esterilor cu catene mai lungi de carbon, deoarece
ia in considerare Tn mod explicit efectul substituentilor asupra reactivitatii
globale a compusilor. O comparatie a estimdrilor arata faptul cd in cazul
moleculelor cu catene mai lungi de carbon metodologia SAR propusa de
Jenkin et al. (2018a; 2018b) este mai exacta decat metoda propusa de Kwok
si Atkinson (1995).

O reprezentare vizuald a corelatiei dintre valorile estimate SAR si cele

obtinute in cadrul studiului de fata este oferita in Figura 11.11.
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Figura IL.11. Corelatia dintre estimarile SAR si coeficientii de viteza de

reactie initiati de radicalii OH in fazd gazoasd determinati experimental ai
Z3HF, Z3HAc, Z3HiB, Z3H3MeB, Z3HH si Z3HBz investigati.
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Tabel I1.9: Coeficientii de viteza de reactie experimentali si estimati prin SAR pentru esterii cis-3-hexenilici cu radicalii
OH. Raporturile dintre valorile estimate si datele experimentale (ksar/Kexp) sunt date in paranteze.

k(ester+OH)><1011 (cm’ molecule”' ™)
k
compus Mairean et Literatura Kwok si Atki —
al., 2024 EPI Suite-AOPWIN® wo (51‘9 o5) MO 1 senkin et al. (2018a,b) | Peeters et al. (2007)

Z3HF 413+045 | 4614071 6,05 (1,46) 6,05 (1,46) 6,71 (1,63) 6,00 (1,45)
Z3HAC 419%038 | 7744+150° 6,05 (1,44) 6,05 (1,45) 6,85 (1,63) 6,00 (1,43)
Z3HiB 4,84 + 0,39 6,14 (1,27) 6,23 (1,29) 6,97 (1,44) 6,00 (1,24)
Z3H3MeB | 539 + 0,61 6,36 (1,18) 6,41 (1,19) 7,32 (1,36) 6,00 (1,11)
Z3HH 7,00 £ 0,56 6,50 (0,93) 6,55 (0,94) 7,43 (1,06) 6,00 (0,86)
Z3HZ3H | 10,58 + 1,40 11,83 (1,12) 11,87 (1,12) 13,01 (1,23) 12,00 (1,13)
73HBz 3,41 +0,28 6,11 (1,79) 6,11 (1,79) 6,98 (2,05) 6,00 (1,76)

*US EPA; ° Rodriguez et al., (2015); ‘Calvertetal., (2015).
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11.4.3. Evaluarea gradului de formare a aerosolilor organici secundari in
urma oxidarii esterilor nesaturati de citre radicalii OH in conditii de
atmosfera simulata

In acest studiu a fost investigati formarea aerosolilor organici
secundari in urma fotooxidarii in faza gazoasa a esterilor cis-3-hexenilici de
catre radicalii OH, in conditii atmosferice simulate. S-au realizat experimente
in conditii de concentratie scazutd de NOx (low NOy) si in conditii de
concentratie ridicata de NOx (high NOy).

Reactiile au fost efectuate utilizand concentratii initiale de aproximativ
5 x 10® molecule cm™ pentru esterii studiati. Nu a fost utilizat un scavenger
pentru radicalii OH, iar umiditatea relativa a fost de aproximativ 2%.
Consumul esterilor nesaturati in timpul experimentelor a fost monitorizat prin
spectroscopie FT-IR, iar formarea si evolutia aerosolilor organici secundari au
fost masurate utilizind un sistem in tandem, compus dintr-un contor de
particule cuplat la un clasificator de particule dupa numar si volum.

Pentru experimentul cu NOx scézut, radicalii OH au fost generati prin
fotoliza H202 la 254 nm in camera de simulare atmosferici. In cazul
experimentelor realizate in conditii de concentratie ridicata de NOy, radicalii

OH au fost generati prin fotoliza nitritului de izopropil la 365 nm.

11.4.3.1. Acetat de cis-3-hexenil + OH (Low NOx)

Aerosolii organici secundari au fost generati prin fotooxidarea
acetatului de cis-3-hexenil in fazd gazoasa, utilizdnd cele 32 de lampi
germicide (Amax = 254 nm) din camera ESC-Q-UAIC. H20> a fost introdus Tn
reactor intr-un volum masurat. Testele preliminare efectuate au indicat ca
acetatul de cis-3-hexenil nu prezintd fotoliza in conditiile camerei ESC-Q-
UAIC, iar consumul observat n timpul expunerii la radiatie de 254 nm a fost

atribuit exclusiv pierderilor prin depunere pe peretii reactorului. Aceasta
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pierdere fizica a fost cuantificatd experimental si inclusd in corectiile aplicate
ulterior determindrilor cinetice.

Dupa introducerea si monitorizarea compusilor timp de cateva minute,
lampile germicidale (Amax = 254 nm) au fost aprinse, generand radicalii OH
prin fotoliza precursorului introdus anterior (H20). Concentratiile esterului
nesaturat si formarea aerosolilor organici secundari au fost monitorizate
continuu, utilizand tehnica spectroscopicd FT-IR (Bruker Vertex 80) si un
sistem analitic tandem compus dintr-un clasificator diferential de mobilitate si
un contor de particule (TSI SMPS-CPC).

Figura 11.13. prezinta distributia concentratiei de masa a particulelor
de aerosoli, in functie de diametru, in timpul reactiei de fotooxidare a
acetatului de cis-3-hexenil de catre radicalii OH 1n conditii de NOx scazut. Din
distributia concentratiei masice se observa formarea aerosolilor cu diametre
mici in timpul fotolizei la 254 nm, 1nsd concentratia masica a acestor particule
este nesemnificativa.

Figura I11.14. prezinta procesul de oxidare a acetatului de cis-3-hexenil
ca urmare a reactiei cu radicalii OH in conditii scazute de NOx. Odata ce
lampile sunt aprinse iar radicalii OH sunt generati, acetatul de cis-3-hexenil
este rapid consumat (zona marcata de pe grafic evidentiaza durata reactiei),
urmat de formarea de particule noi si nucleatia instantanee. Concentratia
masicd si numdrul particulelor creste corespunzator. Aceasta este tipica pentru
procesele de oxidare 1n atmosfera, unde poluantii primari sunt transformati in
particule secundare care contribuie la poluarea aerului si pot avea efecte asupra
sandtatii si climatului. Concentratia numarului de SOA a atins un maxim de
particule in decurs de 10 minute si apoi a scazut semnificativ. Cel mai probabil

din cauza partitionarii acestor particule mici cu/sau in produsii fazei gazoase.
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Figura I1.13. Distributia masica a aerosolilor organici secundari formati in
urma reactiei acetatului de Cis-3 hexenil cu radicalii OH in conditiile camerei
ESC-Q-UAIC, la 298 K, 1000 mbar aer si NOx scazut (Low NOy).
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Figura I1.14. Formarea aerosolilor organici secundari in urma fotooxidarii
acetatului de cis-3-hexenil de catre radicalii OH in conditiile camerei ESC-Q-
UAIC, la 298 K si 1000 mbar aer si in conditii scazute de NOx.
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Distributia dimensionala si numerica a aerosolilor indicd o corelatie
clard intre procesele chimice (oxidare si nucleatie) si procesele fizice (crestere
si coagulare) in formarea aerosolilor organici secundari. Conditiile scazute de
NOx favorizeazd formarea SOA prin mecanisme radicalice care implica
oxidarea directd a esterului, cu impact semnificativ asupra marimii si

numarului particulelor.

11.4.3.2. Acetat de cis-3-hexenil + OH (High NOx)

Distributia semnalului inregistrat in urma reactiei acetatului de cis-3-
hexenil cu radicalii OH in conditiile camerei de reactie si NOx ridicat (High
NOy) este prezentata in Figura 11.19. Nu s-a observat si masurat formarea de

aerosoli organici secundari ca urmare a acestei reactii.

Concetratia masica a particulelor (ng/m3)

Figura I1.19. Distributia semnalului inregistrat in urma reactiei acetatului de
cis-3 hexenil cu radicalii OH in conditiile camerei ESC-Q-UAIC, la 298 K,
1000 mbar aer si NOx ridicat (High NOx).

In conditii de NOx ridicat, in urma reactiei dintre acetatul de cis-3-

hexenil si radicalit OH, nu se formeaza aerosoli organici secundari. Cel mai
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probabil, procesul de formare este Impiedicat de conditiile experimentale de
NOx ridicat ce suprima formarea radicalilor intermediari responsabili de

generarea precursorilor de aerosoli.

IL.5. Studii cinetice pentru evaluarea constantelor de viteza a

reactiei de ozonoliza in faza gazoasa a esterilor cis-3-hexenilici

Cu toate ca reactiile cu radicalii OH sunt considerate principalul mod
de eliminare a esterilor cis-3-hexenilici din atmosfera, reactiile cu ozonul pot
avea o importanta crescuta in special pentru zonele urbane cu nivel crescut de
NOx. Tn aceste zone, nivelurile ridicate de NOx pot suprima formarea
radicalilor OH prin reactia cu acestia formand acid azotic (HNO3). Aceastd
reducere a concentratiei de radicali OH creste importanta relativa a caii de

reactie a ozonului pentru compusii organici volatili (Mollner et al., 2010).

I1.5.1. Determinarea constantelor cinetice de vitezad pentru reactiile
esterilor cis-3-hexenilici cu ozonul in faza gazoasa

Acest studiu prezintd rezultatele experimentale privind ozonoliza in faza
gazoasd a unei serii de sapte esteri nesaturati Cis-3-hexenilici si ofera date
cinetice noi, care extind bazele de date existente si metodologiile SAR aplicate
reactiilor de ozonoliza. In prezent nu existi masuratori cinetice raportate
pentru reactiile ozonului cu izobutiratul de cis-3-hexenil, 3-metil butanoatul
de cis-3-hexenil, hexanoatul de cis-3-hexenil, cis-3-hexenoatul de cis-3-
hexenil sau benzoatul de cis-3-hexenil.

Pentru a evalua coeficientii de vitezd de reactie pentru ozonoliza in
fazd gazoasd a unei serii de esteri cis-3-hexenil, o serie de investigatii au fost
realizate la o temperatura de 298 K si o presiune a aerului de 1 atm.
Experimentele au fost efectuate utilizand camera de simulare a atmosferei de

la Universitatea ,,Alexandru loan Cuza” din lasi (ESC-Q-UAIC), Romaénia.
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Metoda cineticd relativa a fost utilizatd pentru determinarea
experimentala a coeficientilor de viteza ai reactiei de ozonoliza 1n faza gazoasa
a unor esteri cis-3-hexenil selectati. Constantele de viteza pentru reactiile
ozonului cu esterii cis-3-hexenilici au fost determinate prin compararea ratelor
de consum cu cele pentru urmatorii compusi de referinta: ciclohexena, E-2-
butena si propena.

Conditiile experimentale pentru reactiile de ozonoliza

Ozonul a fost generat prin trecerea unui flux constant de oxigen peste
o lampa de mercur care emite la lungimea de unda de 184,9 nm si directionat
ulterior in reactor pentru initierea oxidarii. Cantitdti cantdrite de 1,3,5-
trimetilbenzen (TMB) au fost adaugate in reactor in fiecare experiment ca
specie de urmarire, permitand evaluarea concentratiei radicalilor OH produsi.
Monitorizarea continud a TMB in reactor a permis realizarea corectiilor pentru
degradarea esterilor cis-3-hexenil si a compusilor de referintd, datorata
interferentelor reactiilor secundare initiate de radicaliit OH generati In timpul
ozonolizel compusilor volatili nesaturati. Pentru fiecare compus, pierderea
prin adsorbtie pe peretii reactorului (exprimata prin constanta de pierdere la
perete, kwi) a fost evaluata, iar acolo unde a fost necesar, s-au aplicat corectiile
corespunzatoare In ecuatia cinetica finala.

Secventa urmdtoare de reactii prezinta procesele care au loc in timpul
interactiunilor in faza gazoasa ale esterilor cis-3-hexenilici cu O3 la (298 + 2)

K si o presiune totala a aerului de (1000 + 10) mbar:

ester + O3 —  produsi (+ HO)- Kester
referintd + Os —  produsi (+ HO") Kref
ester —  pereti reactor Kester, wi

Ecuatia Ec. II.11., derivata din integrarea ecuatiilor cinetice, permite
evaluarea raportului constantelor de viteza ale reactiei pentru esterii investigati

in raport cu compusii de referinta:
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ester k referinta
n (7[ ]t()) - kesteT',WL X (t - to) = ester (ln <g)> Ec. IL11.

[ester], krer [referinta],

unde: [ester]o si [referintd]io reprezintd concentratiile initiale ale esterilor cis-
3-hexenilici si ale compusilor de referintd la momentul initial #; [ester]; si
[referinta]; sunt concentratiile esterilor cis-3-hexenilici si ale compusilor de
referintd la un moment 7 in timpul reactiei.

Reprezentarea grafica individualda a relatiei In([ester]w/[ester]y) -
KesterowL (t-t0) 1n functie de In([referinta]wo/[referinta]t) pentru fiecare ester cis-
3-hexenilic si compus de referinta ar trebui sa conduca la o linie dreaptd cu o
pantd egald cu kester / Kret. Constanta de viteza a reactiei, Keseer, poate fi
determinata utilizand constanta de viteza de reactie cunoscutd a compusului
de referinta, Kref.

Utilizarea unui compus trasor (tracer) in locul unuia de captare
(scavenger) pentru radicalii OH, permite corectarea conversiei suplimentare a
analitilor cauzata de reactiile initiate de radicalii OH in timpul ozonolizei. in
acest studiu, 1,3,5-trimetilbenzenul a fost utilizat ca si compus trasor, deoarece
nu interactioneaza cu moleculele de ozon, reactioneaza exclusiv cu radicalii
OH, (Paulson et al., 1999; Rickard et al., 1999) si prezinta caracteristici
spectrale IR distincte, facilitind analiza spectrala.

Pe langa reactiile initiale Tn amestecul gazos apar si urmatoarele reactii

atunci cand se utilizeaza un compus trasor:

ester + OH —  produsi K'ester
referinta + OH —  produsi K'ref
trasor + OH —  produsi K'tracer
trasor —  pereti K'tracer, WL

Urmand mecanismul de consum al compusului trasor, concentratia
radicalilor OH ([OH]) poate fi determinata conform ecuatiei Ec. 11.12. Aceasta

permite cuantificarea impactului radicalilor OH asupra cineticii reactiilor din
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amestecul gazos si corectarea pierderilor aditionale ale esterilor cis-3-hexenil
si ale compusilor de referintd, asigurand o analizd riguroasa a proceselor de

ozonoliza atmosferica.

[OH] = <ln([[TT]]to>  Kirasorw, X (= t0> Ec. IL12.
t
1
X

k,trasor X (t —t
unde:

v [T si [T]t reprezinta concentratiile compusului trasor la momentele
to si respectiv t;

v K'racerwL €Ste constanta de pierdere la perete a compusului trasor in
reactor;

v K'racer €Ste constanta de viteza de reactie in faza gazoasa a radicalilor
OH cu compusul trasor, determinata la conditiile experimentale de
temperaturd si presiune.

Ecuatia Ec. I1.13. ia in considerare reactiile chimice secundare initiate
de radicalii OH in amestecul gazos si este derivatd din ecuatia Ec. IL.11.
Aceasta permite corectarea pierderilor aditionale ale esterilor cis-3-hexenil si
ale compusilor de referintd, oferind o evaluare mai precisd a cineticii

ozonolizei in conditii atmosferice simulate.

[ester], ’
n [eTer]t — (kesterwr + K ester X [OH]) x (t —ty)
kester ( ([Teferinta] to

In

Ec. 11.13.
[referintal,

!
) - reference

kre ferinta

X [OH] x (t — t0)>

Aceasta abordare permite o determinare a coeficientilor de vitezd de

reactie pentru ozonoliza esterilor cis-3-hexenil, corectand pierderile cauzate
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de reactiile secundare initiate de radicalii OH. Valoarea pantei in reprezentarea

graficd mentionatd mai sus ofera raportul coeficientilor de reactie pentru

ozonoliza compusilor studiati in comparatie cu compusii de referinta.

Tabel I1.15: Valorile constantelor de reactie in faza gazoasa a Os cu esterii cis-

3-hexenilici investigati, utilizdnd diferiti compusi de referinta.

k(ester+03)(avg)>< 1 01
7

Compus Referinti Kester/Kret Kester, % 107
(cm® molecule! s7)
. ) . propena 409+0,19 | 4,21+0,19
formiat de cis-3-hexenil - - 453 +0,50
ciclohexena 0,60+0,02 | 4,94+0,13
tat de cis-3-h " propena 477+016 | 491+0,16 5514060
-3- ni +
acetat de ciso-iexe ciclohexend | 0,80+ 0,01 | 6,54 + 0,11 L=
izobut'irat de cis-3- p'ropené i 7,26+0,23 | 7,48+0,24 789+ 0,85
hexenil ciclohexena 1,04+0,03 | 8,40+0,25
_ il i«.3. | E-2-Butena 0,57+0,02 | 11,50+ 0,40
3 metl. butanoat de cis-3 11,94 + 1,30
hexenil ciclohexena 154+0,05 | 12,50+ 0,40
| E-2-Buteni 0,76 +0,04 | 15,20 + 0,83
hexanoat de cis-3-hexenil - 15,34 £ 1,74
ciclohexena 1,91+0,11 | 15,50+ 0,90
cis-3-h'exenoat de cis-3- E.-2-Butenév 1,02+0,04 | 20,40 +0,88 22 45 + 253
hexenil ciclohexeni | 3,21+0,18 | 26,00 + 1,48
benzoat de cis-3-hexenil | E-2-Butena 1,40+ 0,03 | 28,00 + 0,68 29,11 + 3,20
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Figura 11.20.1-7. Reprezentarea grafica a cineticii relative a esterilor de cis-
3-hexenil versus referinte (Mdirean et al., 2025)
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Pentru a evalua contributia fiecarui mecanism de reactie (cu ozonul,
radicalii OH si pierderile la perete) la conversia esterilor Cis-3-hexenilici si a
compusilor de referintd, in Figura 11.22. sunt prezentate fractiile relative
consumate prin aceste procese n timpul experimentelor cinetice realizate.
Toate valorile conversiei analitilor (exprimate in % fatd de semnalul obtinut
inainte de initierea ozonolizei), inclusiv pentru compusii de referinta si de
urmadrire, influentate de pierderile la perete, precum si de reactiile initiate de

ozon si OH, sunt prezentate in Figura 11.22, respectiv Tabelul 11.16 (Mairean

et al., 2025).
100-____'_'__'_'___Ozone
g OH radicals
e Wall loss
Unreacted
80}
— il [ .
) s
5 = ‘{- 1
] 3 |
@ =) — R
>
ol -
204k
KN ==
[ booiiid '

0
Z3HF  Z3HAc Z3HiB Z3H3MeB Z3HH Z3HZ3H Z3HBz C3H6 cC6H10 E2B  TMB

Figura 11.22. Reprezentarea grafica a conversiei tuturor esterilor Cis-3-
hexenilici, a compusilor de referinta (propend, C3Hs; ciclohexenad, c-CsH1o; si
E-2-butena, E2B) si a compusului de urmarire in timpul ozonolizei esterilor
nesaturati, evidentiind contributia fiecarui proces individual (ozonoliza,
reactia cu radicalii OH si pierderile prin adsorbtie pe peretii reactorului).
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I1.5.2. Variatia reactivitatii in fazid gazoasa pentru reactiile ozonului cu
esterii cis-3-hexenilici
Rezultatele experimentale prezentate sugereaza ca reactivitatea fatd de ozon
este influentata atat de marimea grupului acil, cat si de gradul de nesaturare al
compusului. Variatia coeficientilor de viteza a reactiei pentru esterii nesaturati
urmeaza o tendinta clard, dupd cum este indicata de seria:
Z3HF < Z3HAc < Z3HiB < Z3H3MeB < Z3HH < Z3HZ3H < Z3HBz.

Modul de ierarhizare sugereaza faptul cd, pe masurd ce grupul acil
devine mai mare sau mai nesaturat, reactivitatea fatd de ozon creste, probabil
din cauza densitatii electronice sporite si a factorilor structurali asociati cu
aceste modificari. Aceastd tendintd poate fi, de asemenea, atribuitd cresterii
gradului de conjugare al sistemelor electronice din cadrul esterilor nesaturati,
ceea ce le sporeste susceptibilitatea la aditia ozonului, asa cum se observa in
derivatii cu un grad mai mare de nesaturare si care contin grupuri acil mai
voluminoase, precum Z3HBz.

Figura I1.23. oferd o reprezentare vizuala a acestei tendinte si permite
o analizd comparativd cu literatura existentd, incluzand compusi precum
Z3HF, Z3HAc, cis-3-hexend, cis-3-hexen-1-ol si cis-3-hexenal. Insertia
prezinta distributia liniara a valorilor logaritmizate ponderate ale coeficientilor
de vitezd ai ozonolizei esterilor cis-3-hexenil cu fragmente acil saturate in
functie de numadrul atomilor de carbon, evidentiind importanta efectului
electronic inductiv al grupului R asupra efectului inductiv general al grupului
functional ester in raport cu dubla legatura. Comparatiile realizate contribuie
la contextualizarea tiparelor observate de reactivitate in raport cu datele
existente in literatura, oferind astfel o intelegere mai ampla asupra modului in
care structura moleculard influenteaza reactivitatea fata de ozon a esterilor

nesaturati.
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Datele experimentale indicd faptul ca coeficientii vitezei de reactie in
faza gazoasa ai esterilor cis-3-hexenilici (formiat, acetat si izobutirat) cu
moleculele de ozon sunt mai mici comparativ cu cel al cis-3-hexenei, care
prezintd un coeficient de reactie de (1,44 + 0,43) x 10™® cm® molecule? s
(Calvert et al., 2015). In schimb, coeficientii de viteza de reactie pentru cis-3-
hexenoatul si benzoatul de cis-3-hexenil sunt mai mari, iar cei ai 3-metil
butanoatului si hexanoatului de cis-3-hexenil sunt similari cu valoarea de

referintd (Mairean et al., 2025).
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Figura I1.23. Reprezentare graficd a tendintei de reactivitate in faza gazoasa
pentru ozonoliza esterilor cis-3-hexenilici la o temperatura de (298 + 2) K si
presiune atmosferica. Datele provin din (e) prezentul studiu, (m) Zhang et al.
(2018), (A) Atkinson et al. (1995), (®) Grosjean si Grosjean (1998) si (V)
Harvey et al. (2015).

Coeficientii vitezei de ozonoliza ai esterilor cis-3-hexenilici sunt cel
putin egali sau mai mari dect cei ai cis-3-hexenolului ((4,13 + 0,34) x 10/

cm?® molecule® s%; Grira et al., 2022) si ai cis-3-hexenalului ((3,50 % 0,20) x
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101" cm® molecule s%; Xing et al., 2012). Aceasti observatie se explici prin
diminuarea efectului inductiv de retragere de electroni exercitat de gruparea
estericd, datoritd efectului inductiv donator exercitat de grupurile acil,
sustinand ipoteza formulata de Zhang et al. (2018). Studiile cinetice realizate
asupra unor metacrilati au demonstrat influenta structurii grupurilor acil si
alcoxil asupra reactivitatii fata de ozon (Ren et al., 2019).

Analiza datelor prezentate in Tabelul 11.17. indica o corelatie pozitiva
intre valorile coeficientului de viteza de reactie (k) si lungimea gruparii
alcoxilice, asa cum a fost raportat anterior pentru seria eterilor vinilici (Al
Mulla et al., 2010; Zhou et al., 2012; Colmenar et al., 2015). n cazul
benzoatului de cis-3-hexenil, nucleul aromatic actioneazd ca un donor
electronic prin efect conjugativ, compensand efectul inductiv de atragere de
electroni exercitat de gruparea esterica, asa cum este ilustrat in Figura 11.24.

In privinta reactivititii fati de radicalii OH, prezenta nucleului
aromatic nu influenteazd semnificativ reactivitatea, deoarece siturile
aromatice sunt neglijabile (Mairean et al., 2024). Existenta conformatiei
cis/trans, sugerata de Zhang et al. (2018), releva ca forma trans este mai
stabild energetic, iar geometria planara aromaticd poate diminua efectele

sterice comparativ cu esteri alifatici similari.

(0

WDL -— TN \

Figura I1.24. Efectul electromeric care are loc n molecula de benzoat de cis-
3-hexenil, conducind la o crestere semnificativd a reactivitatii fatd de ozon
prin anularea efectului de retragere a electronilor al grupei functionale
esterice.
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I1.5.3. Estimarea reactivitatii esterilor cis-3-hexenilici cu ozonul conform
modelelor SAR

In lipsa unor masuritori experimentale directe, metodele de estimare a
reactivitatii pe baza relatiei dintre structura si activitate (SAR) reprezinta un
instrument valoros pentru estimarea constantelor de viteza de reactie ale
acestor reactii $i pentru caracterizarea mecanismelor implicate (Mairean et al.,
2025).

Tn studiul curent s-au utilizat patru metode SAR (Atkinson si Carter,
1984; McGillen et al., 2008, 2011; Calvert et al., 2002 respectiv Jenkin et al.,
2020) pentru a estima valorile constantelor vitezei de reactie in fazd gazoasa,
pentru o serie de esteri cis-3-hexenilici cu Os. Aceste metode au fost dezvoltate
pe baza unor seturi extinse de date experimentale si pot oferi o estimare
rezonabild a reactivitatii compusilor nesaturati fatd de ozon.

Valorile constantelor de vitezd pentru ozonoliza esterilor cis-3-
hexenilici, obtinute experimental, au fost comparate cu valorile constantelor
calculate cu ajutorul diferitelor abordari SAR. Analiza comparativd intre
datele experimentale si estimdrile SAR evidentiaza limitarile actualelor
metodologii 1n estimarea corectd a coeficientilor de viteza ai reactiei dintre

ozon si esterii cis-3-hexenil.
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Tabel : Coeficientii de viteza de reactie experimentali si estimati prin SAR pentru esterii de cis-3-hexenil cu ozonul.

Raporturile dintre valorile estimate si datele experimentale (k

SAR/kexp

) sunt date in paranteze.

K(ester+03) X 10'7 (cm® molecule™ s71)

SAR (Kksar/Kexp)
Compus Mairean et | Zhang et
Atkinson si | Calvert et al., | McGillen et | Jenkin et
al., 2025 al., 2018

Carter, 1984 2000 al., 2011 al., 2020
formiat de cis-3-hexenil 4,53 + 0,50 4,06 + 0,66 | 13 (2,89) 12 (2,67) 3,6 (0,79) 12 (2,67)
acetat de cis-3-hexenil 5,51 + 0,60 5,77+ 0,70 | 13 (2,36) 12 (2,18) 3,6 (0,64) 12 (2,18)
izobutirat de cis-3-hexenil 7,89 + 0,85 - 13 (1,65) 12 (1,52) 3,6 (0,30) 12 (1,52)
3-metil butanoat de cis-3-hexenil 11,94 £ 1,30 | - 13 (1,09) 12 (1,01) 3,6 (0,30) 12 (1,01)
hexanoat de cis-3-hexenil 15,34 +1,74 | - 26 (1,16) 12 (0,78) 3,6 (0,23) 12 (0,78)
cis-3-hexenoat de cis-3-hexenil 22,45+2,53 | - 26 (1,16) 24 (1,07) 21,2 (0,94) 24 (1,07)
benzoat de cis-3-hexenil 29,11 +£3,20 | - 13 (0,45) 12 (0,41) 3,6 (0,12) 12 (0,41)
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Implicatii atmosferice ale reactiilor in fazd gazoasa a esterilor cis-3-
hexenilici

Concentratia de oxidanti atmosferici, cum ar fi radicalii hidroxil, ozonul si
radicalii nitrati joacd un rol crucial in determinarea duratei de viatd a
compusilor organici volatili emisi de vegetatie. Emisiile biogene de esteri cis-
3-hexenilici contribuie semnificativ la bugetul global de oxidanti fotochimici
si aerosoli organici secundari. Degradarea atmosferica a esterilor cis-3-
hexenilici poate duce la formarea de compusi carbonilici si acizi, sub forma
de propanal si acid propanoic, precum si la esteri saturati functionalizati.
Cunoasterea coeficientilor de vitezd a reactiilor esterilor cis-3-hexenil cu
ozonul este esentiald pentru intelegerea mecanismului atmosferic si a
implicatiilor aferente (Mairean et al., 2025).

Timpul de viata atmosferic () a fost calculat pentru fiecare ester cis-
3-hexenil investigat in aceste studii, pe baza datelor cinetice obtinute si a
concentratiilor medii de radicali OH si O3 din timpul zilei. Ecuatia Ec. I1.10 si
Ec. I1.14 au fost utilizate pentru a calcula timpul de viata atmosferic al esterilor
cis-3-hexenilici datorat reactiilor cu radicalii OH respectiv ozonul, in timp ce
timpul de viata atmosferic mediu total (Ttta) a fost estimat utilizand ecuatia

Ec. II.15:

T0H = 1/K(ester +on) X [OH] Ec. I1.10
703 = 1/K(ester + 03) X [O3] Ec. 11.14
Ttotal = 1/2(K(ester + ox) X [0X]) Ec.1I1.15

unde Kkester+ox) reprezintad constanta vitezei de reactie a esterului respectiv cu
specia oxidantd, [0x], concentratia medie a speciei oxidante pe timp de zi
(conform studiilor), keester + ox) reprezinta coeficientul de viteza al reactiei dintre
ester si un oxidant (de exemplu, OH, NOs3, Cl sau O3), iar [0x] este concentratia

atmosferica medie a oxidantului.
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Timpii de viata atmosferici ai reactiilor initiate de OH in faza gazoasa
pentru esterii cis-3-hexenil studiati sunt estimati a fi intre 2,3 si 7,2 ore,
conform datelor prezentate in Tabelul 11.14.

Timpul de viata troposferic calculat pentru reactiile initiate de O3 n
faza gazoasa cu esterii Cis-3-hexenil variaza intre 1,4 si 8,8 ore, asa cum este

prezentat in Tabelul 11.18.
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Tabel I1.18: Timpul de viata troposferic, 7 (in ore), pentru esterii
gazoase O3, OH, NOs si C1®,

cis-3-hexenil studiati in prezenta speciilor oxidante

Coeficientul vitezei de reactie (cm® molecule s Timpul de viati troposferic (ore)
c kos x 10Y kown x 101! 13 10
ompus Mairean et Mairean et knos x 10 kel x 10 103 TOH TNO3 TCl Ttotal
al., 2025 al., 2024
‘;Oe;t‘:]"’l‘: decis-3- | 4534050 | 413+045 - 245+030© | 88+10 | 6,0£07 - 113,4+13,9 | <3,4+07
aoeatdecled: | 551:060 | 410038 | 246£0730 : 72+08 | 59+05 | 23+07 : <1302
izobutiratde cis- | ;59,085 | 4:84+039 - - 50+05 | 51+04 - - <25%03
3-hexenil
S-metil butanoat | 4, 5/ 4 4 35 | 539+ 0,61 - i 33+04 | 46+0,5 : i <1,9+03
de cis-3-hexenil
hexanoat de €is-3- | 15 344174 | 7,00+ 0,56 - - 2603 | 35+03 - - <15%02
hexenil
cis-3-hexenoatde | ») 45+ 253 | 10,58 + 1,40 - - 18+02 | 23%03 - - <10+02
cis-3-hexenil
benzoat de cis-3-
hexenil 29,11+320 | 3,41+0,28 - - 14£02 | 72+0,6 - - <12%02

@ Concentratiile medii troposferice folosite pentru calcularea timpilor de viati ale esterilor cis-3-hexenil: [OH] = 1,13x10° radicali
cm (Lelieveld et al., 2016); [O3] = 7x10'! molecule cm™ (Logan, 1985); [NO3] = 5x10° radicali cm™ (Shu si Atkinson, 1995);
[C1] = 10* atomi cm™ (Wingenter et al., 1999); ® Atkinson et al., 1995; ) Rodriguez et al., 2015; (-) Nu sunt date disponibile.
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III. CONCLUZII GENERALE

In cadrul acestei teze au fost determinati experimental coeficientii de viteza
pentru reactiile in faza gazoasa ale sapte esteri ai cis-3-hexenilului cu radicalii
OH si cu ozonul, utilizind metoda cineticii relative. Experimentele au fost
realizate la temperatura standard de (298 + 2) K si la o presiune atmosferica
de (1000 £+ 10) mbar. Obiectivele principale au inclus determinarea gradului
de fotolizd, evaluarea reactivitatii fatd de radicalii OH si ozon, estimarea
timpilor medii de viata si evaluarea impactului atmosferic ale acestor esteri
nesaturati.

Studiile prezentate in aceasta tezd au determinat experimental in
premiera coeficientii de viteza pentru reactiile a cinci esteri de cis-3-hexenil
cu radicalii OH si ozonul; dezvoltarea si validarea metodei cineticii relative in
camera ESC-Q-UAIC;. Aceste rezultate au extins considerabil baza de date
cinetice internationald si pot fundamenta imbunatatirea modelelor predictive
utilizate in chimia atmosferica.

Metoda cineticii relative aplicatd s-a dovedit a fi eficienta si robusta,
conducand la rezultate reproductibile si precise, in concordanta cu valorile din
literatura de specialitate pentru compusi similari, fapt ce valideaza
metodologiile experimentale utilizate. Conditiile experimentale au fost riguros
controlate si verificate printr-un studiu cinetic preliminar asupra reactiei dintre
acetatul de n-butil si radicalii OH, care a confirmat validitatea setup-ului
experimental.

Implementarea metodei ,,tracerului” pentru estimarea radicalului OH
in situ, s-a dovedit comparabila ca eficienta cu abordérile traditionale bazate
pe utilizarea compusilor de tip ,,scavenger”.

Durata medie de viatad troposfericd estimatd pentru acesti esteri, in
urma reactiilor cu radicalii OH s1 ozon, este sub 8 ore, ceea ce indica o

degradare rapida in apropierea surselor biogene de emisie si o probabilitate
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redusd de transport pe distante lungi. Astfel, acesti compusi influenteaza in
principal procesele fotochimice locale si regionale, avand un impact direct

asupra bugetului fotooxidantilor si a formarii SOA.
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