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Abstract: There is an urgent need to explore alternative compounds in order to
develop new antifungal medications due to the rise of fungal infections and the
attending resistance to some of the existing drugs. Thus, the object of this work
was to synthesize and evaluate, for the first time the antifungal activity of eight
known aromatic acylals against Aspergillus niger, Aspergillus flavus and
Trichophyton rubrum. The aromatic acylals were obtained by the reaction of
aromatic aldehydes with acetic anhydride using H,SO,-silica as a catalyst. In vitro
evaluation of the compounds against A. niger, A. flavus and T. rubrum, along with
ketoconazole as the positive control was then performed. The results showed that
all of the compounds were active against A. flavus. Compound 2a demonstrated
interesting antifungal potential showing the lowest MIC value among the tested
compounds.
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Introduction

Fungal infections also termed mycoses are described as one of the
overlooked emerging diseases which are responsible for approximately 1.7
million deaths annually.! Globally, more than 1 billion people are affected
by fungal infections in which over 150 million accounts for severe and life-
threatening cases.? The current mainstay for the treatment of antifungal
infections relies heavily on four classes of drugs, namely the polyenes,
azoles, echinocandins and the pyrimidine analogue flucytosine
(5-fluorocytosine).> However, novel resistant variants of previously
susceptible pathogens such as Aspergillus fumigatus,* as well as entirely
new emerging species like Candida auris that are resistant to multiple
antifungal drugs have been reported.” When a fungal pathogen develops
resistance to one class of antifungal agent, research has shown that the
remaining alternatives may be less successful as well.® Looking at the few
numbers of antifungal medications that are now licensed for use in the
treatment of fungal infections where most of them have drawbacks such
high toxicity and limited efficacy.” The urgent option is to vigorously search
for novel antifungal agents in order to tame the unfolding public health
crises. Meldrum’s acid can be structurally considered as a cyclic diacetate in
which the two carboxylate groups are connected by a methylene and
quaternary carbons (Figure 1a). Derivatives of Meldrum’s acid have been
reported to have a wide spectrum of biological activities which includes
anticancer, antifungal, and antibacterial properties.® Thus, this continued to
attract the attention of medicinal chemists in drug design. In continuation of

our search for biologically active small molecules,®*?

we decided to explore
the antifungal property of simple aromatic acylals which coincidentally
contains the acyclic core structural motif of Meldrum’s acid (Figure 1b).
Hence in this work, some known aromatic acylals were synthesized and for

the first time evaluated their activity against three fungal species in vitro.
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Figure 1. Structures of (a) Meldrum's acid (b) Core acylal motif.

Results and Discussion

Chemistry

Acylals, 2a-h were synthesized (Scheme 1) by reacting the
appropriate aldehyde with acetic anhydride using H,SOg-silica as a catalyst.
The obtained products were characterized using NMR and FTIR
spectroscopic techniques. According to the NMR data of compound 2a, the
'H NMR spectrum (Figure 2) of the compound gave a signal at 2.13 ppm
assigned to the six protons of the methyl groups of the diacetoxy groups,
(OCOCHS3),. The two aromatic protons closer to the carbon of the ring
bonded to the carbon attached to diacetoxy group appeared at 7.41 ppm,
while the signal at 7.52 ppm was assigned to the other three aromatic
protons on the benzene ring. The signal at 7.6 ppm was assigned to the
proton from the methine group (—CH) attached to the diacetoxy group
(OCOCHs3),. The **C NMR spectrum (Figure 3) gave a signal at 20.8 ppm
for the two methyl carbons, (—CHs), and the signal from 89.7 ppm was
assigned to the methine carbon (—~CH) bonded to the diacetoxy groups,
(OCOCHes3),. The signals from the range 126.7 ppm — 135.5 ppm were
designated for the aromatic carbons. Lastly, the signal at 168.8 ppm was
assigned to the two carbonyl carbons of the diacetoxy group, (OCOCHs3)s,.
The FTIR spectrum indicated the absorption band for C-O group at
1498 cm™, the absorption band for C-H group at 3064 cm™, while the
absorption at 1752 cm™ confirmed the presence of carbonyl groups C=0.
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Figure 2. *H NMR spectrum of compound 2a.
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Figure 3. *C NMR spectrum of compound 2a.

Antifungal activity

The compounds were screened for antifungal activity against
Aspergillus niger, Aspergillus flavus, and Trichophyton rubrum following a
disc diffusion method. All of the fungi were found to be sensitive to the
compounds except 2b which showed no activity against A. niger and
T. rubrum (Table 1). Compounds 2a, 2c, 2d, and 2e demonstrated
substantial inhibition zones, particularly against A. niger at 13 mm, 21 mm,
15 mm and 17 mm respectively. While, compounds 2b, 2g, and 2h did not
showed activities against this fungal strain. However, compounds 2a, 2c,
and 2d were most effective, against A. flavus with zones of inhibition of
19 mm, 26 mm and 19 mm respectively. This was followed by compound
2g at 11 mm. Compounds 2b, 2e, 2f, and 2h were less effective with similar
zones of inhibition of 9 mm. As for T. rubrum, compound 2d exhibited the

highest activity at 24 mm followed by compound 2a with 18 mm.



172 I. Abdullahi et al.

Compound 2e was less effective with 8 mm zone of inhibition, while
compounds 2b, 2c, 2f and 2h were inactive against this strain. This
suggested that structural variations among the compounds may significantly
influence their antifungal properties. The results indicated that while all
compounds showed activity against A. flavus, but sensitivity towards A.
niger and T. rubrum was selective. The absence of activity in compounds
2b, 2c, 29, and 2h against specific strains highlights the need for further
structural modifications to enhance their antifungal efficacy.

Table 1. Zone of inhibition of aromatic acylals against fungi.

Fungi
Compound Zone of Inhibition
1,000 pg/mL (mm)?
Aspergillus niger Aspergillus Trichophyton
flavus rubrum
2a 13 19 18
2b ND 9 ND
2C 21 26 ND
2d 15 19 24
2e 17 9 8
2f 11 9 ND
29 ND 11 11
2h ND 9 ND
Ketoconazole 41 32 36

# = mean values of triplicate tests; ND = not determined

The active compounds were further evaluated for Minimum
inhibitory concentration. It was found that compounds 2a demonstrated the
lowest concentration of 10 pg/mL against T. rubrum. While compounds 2a,
2d, 2e inhibited A. flavus at 15 pg/mL. Compound 2e was the only one with
a lowest inhibitory activity of 15 pg/mL against A. niger (Table 2).
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Table 2. Minimum inhibitory concentration of aromatic acylals

against Fungi.

Concentration

Compound (ug/mL)
Aspergillus niger  Aspergillus flavus Trichophyton
rubrum

2a 30 15 10

2¢c 25 20 ND

2d 25 15 20

2e 15 15 ND

2f 25 ND ND

29 ND ND 20
Ketoconazole 2.5 5 5

ND = not determined

Investigation of the minimum fungicidal concentration showed that
compound 2a, 2d, and 2g were fungicidal at 25 pg/mL against T. rubrum.
Compound 2d exhibited the lowest fungicidal effect against A. flavus at
15 pg/mL but the compound was not found to be fungicidal against A.
niger. Compounds 2c and 2f demonstrated a fungicidal effect of 25 pug/mL
against A. niger (Table 3). Generally, compound 2a which contains none of
activating or deactivating groups appeared to exhibit the most interesting

potency in this study.

Table 3. Minimum fungicidal concentration of aromatic acylals

against fungi.

Concentration

Compound (ug/mL)
Aspergillus niger  Aspergillus flavus Trichophyton
rubrum

2a 35 25 25

2c 25 25 ND

2d ND 15 25

2e 30 20 ND

2f 25 ND ND

29 ND ND 25
Ketoconazole 5 10 10

ND = not determined
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Molecular docking studies

Uridine 5’-diphospho-N-acetylglucosamine, (UDP-GICNAC) is an
essential building block in the fungal and bacterial cell walls. The enzyme
responsible for the catalysis of first and rate-limiting step in hexosamine
biosynthesis which produced UDP-GIcNAc is called glucosamine-6-
phosphate synthase, GIcN-6-P), hence it becomes an interesting target for
antifungal and antibacterial drug discovery**™*’. All the eight compounds
have demonstrated a number of favorable interactions with various residues
of the enzyme (Table 4). Generally, the compounds can be grouped into two
in terms of the binding energies; compounds 2d, 2e, 2f and 2h appeared to
have lower energies than compounds 2a, 2b, 2c and 2g. Specifically,
compound 2d which exhibited broad spectrum low MIC values for the three
fungal species appeared to have a binding energy of -6.1 kcal/mol for a total
of six interactions (Figure 4).
Table 4. Binding Interactions of GIcN-6-P with Compounds 2a-h.

Protein Ligand Binding Interaction Distance Binding
Site Types (A) Affinity
Residues (kcal/mol)
GIcN-6-P 2a LEU;145, Hydrophobic 5.71, -5.7
LEU;43 Hydrophobic 4.25
2b SER;99, Carbon H- 4.29, -5.9
HIS;69 Bond 6.63
2¢C LEU;145, Hydrophobic 6.07, -5.8
TYR;149 Donor-Donor 5.49
2d HIS;69, H-Bond, 5.66, -6.1
PRO:66, Carbon H- 4,77,
VAL;89 Bond, 4.55
Hydrophobic
2e PRO;66, Hydrophobic, 4.89, -6.1
LEU;132 Hydrophobic 4.23
2f ARG;113, H-Bond, 6.46, 3.48 -6.3
VAL;142 Hydrophobic 431
VAL;106
29 CYS;158, H-Bond, 5.06, -5.8
LEU;145 Hydrophobic 6.16
2h VAL;106, H-Bond, 3.01 -6.1

LEU;145 Hydrophobic 5.66
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Figure 4. Docking pose of GIcN-6-P with compound 2d.

Experimental

All reagents and solvents used in this work were obtained from
Sigma-Aldrich (Darmstadt, Germany). NMR spectroscopic analysis was
recorded on Bruker AVANCE 400 MHz and chemical shifts (8) are reported
in ppm, while FTIR spectra were recorded on a Perkin-Elmer BX
spectrophotometer and the position of the absorption bands are reported in
cm™. Melting points were determined on electrothermal 1A 9100.
General Procedure for the Preparation of Acylals 2a-h

A mixture of aldehyde (10 mmol), acetic anhydride (40 mmol), and
powdered H,SOs-silica as catalyst (3 mg, 1 mol %) was stirred at room
temperature. The reaction was monitored by TL C until completion. After
completion, the catalyst was filtered by washing with ethyl acetate. The
collected organic layers were further treated with saturated NaHCO;
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solution (3 x 10 mL), water (10 mL), and finally dried with anhydrous
Na;SO4. The solvents were removed in vacuo and the products
recrystallized from ethyl acetate/hexane mixture (1:1) to afford the pure
compounds, 2a-2b,'® 2¢,” 2d-e,? 2f-g,*® 2h. %

Phenylmethylene diacetate (2a)

White crystals; 92% yield; mp 45-46 °C; 'H NMR (400 MHz,
CDCl), 6 (ppm): 2.13 (6H, s, CHs3), 7.41 (3H, m, Ar-H), 7.52 (2H, m,
Ar-H), 7.68 (1H, s, CH); **C NMR (100 MHz, CDCls), & (ppm): 20.8, 89.7,
126.7, 128.6, 129.7, 135.5, 168.8; FTIR (v): 3064, 1752, 1499, 1237 cm™.

4—Chlorophenyl)methylene diacetate (2b)

White crystals; 94% yield; mp 83-84 °C; 'H NMR (400 MHz,
CDCly), & (ppm): 2.12 (6H, s, CHs), 7.37 (2H, d, J = 8.0 Hz, Ar-H), 7.45
(2H, d, J = 8.0 Hz, Ar-H), 7.63 (1H, s, CH); **C NMR (100 MHz, CDCl),
§ (ppm): 20.9, 89.2, 128.3, 128.9, 134.1, 135.8, 168.8 ; FTIR (v): 3050,
1737, 1416, 1059 cm™,

4-Hydroxyphenyl)methylene diacetate (2c)

White crystals; 96% yield; mp 63-64 °C; 'H NMR (400 MHz,
CDCls), & (ppm): 2.12 (6H, s, CHj3), 5.30 (s, —OH), 6.98 (2H, d, J = 8.0 Hz,
Ar-H), 7.63 (1H, s, CH), 7.89 (2H, d, J = 8.0 Hz, Ar-H); *C NMR
(100 MHz, CDCls), & (ppm): 20.9, 89.0, 116.0, 127.2, 128.6, 160.0, 168.8;
FTIR (v): 3355, 3035, 1737, 1506, 1059 cm™.

4-(Trifluoromethyl)phenyl)methylene diacetate (2d)

White crystals; 93% yield; mp 52-53 °C; *H NMR (400 MHz,
CDCly), & (ppm): 2.12 (6H, s, CHs), 7.37 (2H, d, J = 8.0 Hz, Ar-H), 7.45
(2H, d, J = 8.0 Hz, Ar-H), 7.63 (1H, s, CH); *C NMR (100 MHz, CDCls),
§ (ppm): 21.0, 21.4, 89.9, 126.7, 129.3, 132.7, 139.9, 169.0; FTIR (v): 3055,
1759, 1521, 1327, 1118 cm™.
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4-Methylphenyl)methylene diacetate (2e)

White crystals; 95% yield; mp 62-63 °C; 'H NMR (400 MHz,
CDCL), & (ppm): 2.12 (6H, s, CHs), 2.37 (3H, s, CHs), 7.22 (2H, d,
J = 8.0 Hz, Ar-H), 7.41 (2H, d, J = 8.0 Hz, Ar-H), 7.64 (1H, s, CH); *C
NMR (100 MHz, CDCls), 8(ppm): 21.0, 21.4, 89.9, 126.7, 129.4, 132.7,
139.9, 169.0; FTIR (v): 3047, 1737, 1565, 1059 cm™.

3-Nitrophenyl)methylene diacetate (2f)

Yellowish crystals; 97% yield; mp 66-67 °C; 'H NMR (400 MHz,
CDCl), & (ppm): 2.16 (6H, s, CH3), 7.62 (1H, t, J = 8.0 Hz, Ar-H),
7.72 (1H, s, CH) 7.83 (1H, d, J = 8.0 Hz, Ar-H), 8.27 (1H, d, J = 8.0 Hz,
Ar-H), 8.39 (1H, s, Ar-H); °C NMR (100 MHz, CDCly), & (ppm): 20.8,
88.4, 122.0, 124.6, 129.9, 133.0, 137.6, 148.4, 168.7; FTIR (v): 3040, 1752,
1528, 1349, 1193 cm™.

4-Methoxyphenyl)methylene diacetate (29)

Pale yellow oily; 95% yield; mp 63-64 °C; *H NMR (400 MHz,
CDCls), & (ppm): 2.08 (6H, s, CHs), 3.71 (3H, s, OCHs), 6.86 (2H, d,
J=8.0 Hz, Ar-H), 7.4 (2H, d, J = 8.0 Hz, Ar-H), 7.5 (1H, s, CH); *C NMR
(100 MHz, CDCly): & (ppm): 20.4, 55.1, 89.4, 113.9, 127.5, 129.6, 131.5,
169.0; FTIR (v): 3060, 1767, 1513, 11155, 1021 cm™.

4-Hydroxy-3-methoxyphenyl)methylene diacetate (2h)

White powder; 96% vyield; mp 64-65 °C; '"H NMR (400 MHz,
CDCls) & (ppm): 2.12 (6H, s, CHs), 2.32 (3H, s, OCHs), 3.86 (1H, OH),
7.02 (1H, d, J = 8.0 Hz, Ar-H), 7.06 (1H, d, J = 8.0 Hz, Ar-H) 7.12, (1H.s,
Ar-H) 7.65 (1H, s, CH); **C NMR (100 MHz, CDCls), & (ppm): 21.0, 55.1,
89.4, 110.9, 119.3, 123.0, 134.3, 140.8, 151.2, 164.3; FTIR (v): 3045, 1744,
1513, 1200 cm™.
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Antifungal activity

Sourcing of fungal species

Clinical isolates of Aspergillus niger, Aspergillus flavus, and
Trichophyton rubrum were sourced from the Department of Microbiology,
Umaru Musa Yar’adua University, Katsina, Nigeria.

Fungal susceptibility test

All compounds were evaluated for antifungal activity by disc
diffusion method against the clinical isolates of A. niger, A. flavus, and T.
rubrum. Sterilized Whatman filter discs with 6 mm diameter were
impregnated with 1.00 pg/mL DMSO solution of the compounds and
standard drug (ketoconazole) in separate test tubes. The isolates were
inoculated on the freshly prepared SDA plates using a streak plate method.
Then four discs impregnated with each compound and standard drug were
introduced into the plates by aseptic technique. Finally, the plates were
inoculated for 7 days at room temperature, and the zones of inhibition were
recorded. This process was repeated three (3) times?.

Determination of minimum inhibitory/fungicidal concentrations

(MIC/MFC)

These were done as previously reported in our work®.

Molecular docking studies

AutoDock program was implored to investigate the binding within
the active site of the model structure of glucosamine-6-phosphate synthase,
GIcN-6-P, ID: 4AG9, downloaded from the protein data bank. The full set
of compounds 2a-h was drawn using Chem. 3D pro. (v. 12), and the binding
conformation was visualized on PyMOL tool software. The grid size was
placed in the active site pocket centre set to 40 x 40 x 40 xyz points
designated at dimensions (x = 27.610, y = 17.684, z = 16.621 with the
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spacing of 0.375 A for 4AG9. This ensured that the grid boxes comprised
the whole binding site of the enzyme and offered enough space for the
translational and rotational walk of the ligands. AutoDock was executed and
different ligand conformations in a complex with the receptor were obtained
which were ranked based on binding energy. The results were then analyzed
using Biovia Discovery Studio (BDS, v. 24.1.0) software and expressed in
terms of binding affinity (kcal/mol) of protein-ligand binding.?®

Conclusions

Some known aromatic acylals were synthesized following a standard
procedure and their structures fully characterized using NMR and FTIR
spectroscopic techniques. Those acylals were evaluated for the first time
against three species of fungi, namely A. niger, A. flavus, and T. rubrum in
the presence of ketoconazole as standard drug. It was found that all the
compounds were active against A. flavus, but selective against the other two
fungal species. Further screening revealed that compound 2a exhibited the
lowest minimum inhibitory activity against T. rubrum, which demonstrated
fungicidal activity against the same fungi at 25 pg/mL. Although none of
the compounds possess superior activity over the control drug, but the tested
fungal species were established to be sensitive to the aromatic acylals, and
thus provided proof-Of-Concept for further studies.
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