# Hosoya-Diudea polynomial in hyper structures

M. P. Vlad<sup>1</sup> and M. V. Diudea<sup>2\*</sup>

 <sup>1</sup> Faculty of Economic Sciences, "Dimitrie Cantemir" University, Bucharest, Teodor Mihali Street 56, 400591, Romania
<sup>2</sup>Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Arany Janos Str., 400028 Cluj, Romania

**Abstract**. Hosoya polynomial counts finite sequences of distances in a graph G; more exactly, it counts the number of points/atoms lying at a given distance in G. The polynomial coefficients are calculable by means of layer/shell matrices. Shell matrix operator enables the transformation of any square matrix in the corresponding layer/shell matrix, thus generalizing the local property counting according to its distribution by the distances in G. This represents the "Hosoya-Diudea" generalized counting polynomial. We applied this theory to several hypothetical nanostructures with icosahedral symmetry.

Keywords: Hosoya-Diudea polynomial, layer matrix, shell matrix, counting polynomial

## Introduction

Let G(V,E) be a connected molecular graph, without directed and multiple edges and without loops, the vertex and edge-sets of which being represented by V(G) and E(G), respectively. Let's next define the  $k^{\text{th}}$ layer/shell of vertices v lying at distance k with respect to the reference vertex i as:  $G(i)_k = \{v \mid v \in V(G); d_{iv} = k\}$ . The collection of all its layers

<sup>\*</sup> M. V. Diudea, *e-mail*: diudea@chem.ubbcluj.ro

defines the partition of *G* with respect to  $i: G(i) = \{G(i)_k ; k \in [0,1,..,ecc_i]\}$ , with *ecc<sub>i</sub>* being the *eccentricity* of *i* (*i.e.*, the largest distance from *i* to the other vertices in *G*).

**Layer Matrices.** The entries in a layer matrix (of a vertex property) LM, are defined as:<sup>1-5</sup>

$$\left[\mathbf{LM}\right]_{i,k} = \sum_{v \mid d_{i,v}=k} p_v$$

with summation being the most used operation on the collected vertices. The zero column is just the column of vertex properties  $[\mathbf{LM}]_{i,0} = p_i \cdot \text{The}$ Layer matrix **LM** is a collection of the above defined entries:

$$\mathbf{LM} = \left\{ [\mathbf{LM}]_{i,k}; i \in V(G); k \in [0,1,..,d(G)] \right\}$$

with d(G) being the diameter of the graph or the largest distance in G.

Shell Matrices. The entries in a *shell matrix* ShM are defined as:<sup>4-6</sup>

$$[\mathbf{ShM}]_{i,k} = \sum_{v \mid d_{i,v}=k} [\mathbf{M}]_{i,v}$$

where **M** is any square topological matrix. Any other operation over the square matrix entries  $[\mathbf{M}]_{i,v}$  can be used. The shell matrix is a collection of the above defined entries:

**ShM** = 
$$\left\{ [ShM]_{i,k}; i \in V(G); k \in [0,1,..,d(G)] \right\}$$

The zero column  $[\mathbf{ShM}]_{i,0}$  is just the diagonal entries in the info matrix **M**. An index of *centrality*<sup>2,5</sup>*C*(**BM**) is calculated on these matrices (B=L; Sh) as:

$$C(\mathbf{BM})_{i} = \left[\sum_{k=1}^{ecc_{i}} \left(\left[\mathbf{BM}\right]_{ik}^{2k}\right)^{1/(ecc_{i})^{2}}\right]^{-1} ;$$
  
$$C(\mathbf{BM}) = \sum_{i} C(\mathbf{BM})_{i}$$

# **Counting Polynomials.** Define a *distance*-based counting polynomial as:

$$P(x) = \sum_{k} p(G,k) \cdot x^{k}$$

with p(G,k) being sets of local contributions (of extent *k*) to the global (molecular) property  $P(G) = \bigcup p(G,k)$  and summation running up to d(G).<sup>7</sup> The coefficients in Hosoya-Diudea polynomial are calculable from the above defined layer/shell matrices, as the half sums on columns. We use the symbol H(LM,x) for the generalized polynomial computed on a layer matrix LM while Sh(M,x) is the shell-matrix calculated one. When p(v)=1 (*i.e.*, the vertex counting), p(G,k) denotes the number of pair vertices separated by distance *k* in *G*, and the classical Hosoya polynomial<sup>8</sup> is recovered.

Some single number descriptors (*i.e.*, topological indices TIs) can be calculated by evaluating the polynomial derivatives (usually in x = 1):<sup>9</sup>

$$P^k(G,1) = \sum_k k! p(G,k)$$

The aim of this work is to apply the generalized Hosoya-Diudea polynomials in counting face/ring surrounding atoms and their shelldistances distribution in three hypothetical nanostructures with icosahedral symmetry.

#### **Results and Discussion**

The generalized Hosoya-Diudea polynomials will be calculated on cuboctahedron (as a simple structure to illustrate some matrices and topological indices herein calculated) and three hyper-dodecahedral structures, shown in the Figure 1 below.

**Cage design**. The object  $ID@Ico_{20}_{180}$  is made by decorating with icosahedrons Ico the Icosidodecahedron ID, thus any two Ico sharing an

edge. Next, by (Poincaré) dualization<sup>9</sup> one obtains the hyper-cage  $S_2(Do)@Do_{20}_340$ , in which the core S2(Do) is decorated with dodecahedra Do, any two Do sharing an edge. In the above,  $S_2(Do)$  means the "septupling 2" map operation applied on dodecahedron. Finally,  $DoX_{20}_340$  is made by deleting from  $S_2(Do)@Do_{20}_340$  the shared edge (see X in its name). Such structures in believed to appear by self-assembling of icosahedral and dodecahedral atomic clusters.



Figure 1. Cuboctahedron CO and three hyper-dodecahedral nanostructures.

**Polynomial examples on cuboctahedron.** To exemplify the main matrices<sup>1,9</sup> used in deriving the main results, we have chosen the semi-regular polyhedron named cuboctahedron (Figure 1). In Table 1, the adjacency A matrix (with entries 1 if two vertices are connected by one edge and zero, otherwise) and the distance DI matrix, counting the number of edges on the shortest path joining any two vertices in G, the diagonal elements being zero, are exemplified.

Table 1. Adjacency and Distance matrices in Cuboctahedron CO.

\_

| CO_A     | (ac         | ljac | ene | cy) |   |   |      |    |     |     |     |     | CO    | <u> </u> | )I ( | dist | anc | e) |   |   |   |   |   |   |    |
|----------|-------------|------|-----|-----|---|---|------|----|-----|-----|-----|-----|-------|----------|------|------|-----|----|---|---|---|---|---|---|----|
| 0        | 1           | 1    | 0   | 0   | 1 | 1 | 0    | 0  | 0   | 0   | 0   | 4   | 0     | 1        | 1    | 2    | 2   | 1  | 1 | 2 | 2 | 3 | 2 | 2 | 19 |
| 1        | 0           | 0    | 1   | 0   | 0 | 1 | 0    | 0  | 0   | 1   | 0   | 4   | 1     | 0        | 2    | 1    | 2   | 2  | 1 | 2 | 3 | 2 | 1 | 2 | 19 |
| 1        | 0           | 0    | 1   | 0   | 1 | 0 | 0    | 0  | 0   | 0   | 1   | 4   | 1     | 2        | 0    | 1    | 2   | 1  | 2 | 3 | 2 | 2 | 2 | 1 | 19 |
| 0        | 1           | 1    | 0   | 0   | 0 | 0 | 0    | 0  | 0   | 1   | 1   | 4   | 2     | 1        | 1    | 0    | 3   | 2  | 2 | 2 | 2 | 2 | 1 | 1 | 19 |
| 0        | 0           | 0    | 0   | 0   | 1 | 1 | 1    | 1  | 0   | 0   | 0   | 4   | 2     | 2        | 2    | 3    | 0   | 1  | 1 | 1 | 1 | 2 | 2 | 2 | 19 |
| 1        | 0           | 1    | 0   | 1   | 0 | 0 | 0    | 1  | 0   | 0   | 0   | 4   | 1     | 2        | 1    | 2    | 1   | 0  | 2 | 2 | 1 | 2 | 3 | 2 | 19 |
| 1        | 1           | 0    | 0   | 1   | 0 | 0 | 1    | 0  | 0   | 0   | 0   | 4   | 1     | 1        | 2    | 2    | 1   | 2  | 0 | 1 | 2 | 2 | 2 | 3 | 19 |
| 0        | 0           | 0    | 0   | 1   | 0 | 1 | 0    | 0  | 1   | 1   | 0   | 4   | 2     | 2        | 3    | 2    | 1   | 2  | 1 | 0 | 2 | 1 | 1 | 2 | 19 |
| 0        | 0           | 0    | 0   | 1   | 1 | 0 | 0    | 0  | 1   | 0   | 1   | 4   | 2     | 3        | 2    | 2    | 1   | 1  | 2 | 2 | 0 | 1 | 2 | 1 | 19 |
| 0        | 0           | 0    | 0   | 0   | 0 | 0 | 1    | 1  | 0   | 1   | 1   | 4   | 3     | 2        | 2    | 2    | 2   | 2  | 2 | 1 | 1 | 0 | 1 | 1 | 19 |
| 0        | 1           | 0    | 1   | 0   | 0 | 0 | 1    | 0  | 1   | 0   | 0   | 4   | 2     | 1        | 2    | 1    | 2   | 3  | 2 | 1 | 2 | 1 | 0 | 2 | 19 |
| 0        | 0           | 1    | 1   | 0   | 0 | 0 | 0    | 1  | 1   | 0   | 0   | 4   | <br>2 | 2        | 1    | 1    | 2   | 2  | 3 | 2 | 1 | 1 | 2 | 0 | 19 |
| SUM = 48 |             |      |     |     |   |   |      | SU | JM  | = 2 | 228 | =2' | W     |          |      |      |     |    |   |   |   |   |   |   |    |
| 1/2S     | 1/2SUM = 24 |      |     |     |   |   | 1/25 | SU | M = | = 1 | 14= | W   |       |          |      |      |     |    |   |   |   |   |   |   |    |

Table 2 illustrates the layer LC and shell Sh(DI) matrices for the cuboctahedron, along with the derived polynomials and corresponding topological indices.

The first derivative (in x=1) of the classical Hosoya polynomial, equal to H(LC,x) polynomial, provides the well-known Wiener index<sup>10</sup> W, that counts all the distances in G (or half-sum of the entries in the DI matrix): W = H'(1). Next, the hyper-Wiener index<sup>11</sup> is calculated as: WW = H'(1) + (1/2)H''(1)

Remark the relations between the H(LC,x) and Sh(DI,x) polynomials, at the bottom of Table 2; the most interesting relation (providing a new topological index) is:

 $H'(\mathbf{LC},1) + H''(\mathbf{LC},1) = [H(\mathbf{LC},x)*(\mathbf{D}^2 / x) = Sh'(\mathbf{DI},x)]_{x=1}$ 

D being the vector of distances (D=1, 2,..).

|                  | LC(CO)               |          |                               | Sh(DI(CO))              |
|------------------|----------------------|----------|-------------------------------|-------------------------|
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 1 4 6 1 12           |          |                               | 1 4 12 3 20             |
|                  | 48 72 12 132         |          |                               | 48 144 36 228           |
|                  |                      | Sum(x=1) |                               | Sum(x=1)                |
| H(LC,x)          | $24x + 36x^2 + 6x^3$ | 66       | Sh(DI,x)=H(LC,x)*D            | $24x+72x^2+18x^3$ 114=W |
| H'(LC,x)         | $24 + 72x + 18x^2$   | 114=W    | Sh(DI,x)=x*H'(LC,x)           |                         |
| H"(LC,x)         | 72+36x               | 108      | Sh(DI,1)=H'(LC,1)             |                         |
| H'(LC,x)+H"(LC,x | x) $96+108x+18x^2$   | 222      | Sh'(DI,x)                     | $24+144x+54x^2$ 222     |
| $PD^{2}S$ (LC,1) | 24+144+54            | 222      | $Sh'(DI,x) = H(LC,x)*(D^2/x)$ | )                       |
| $PD^{2}S(LC,1)$  | H'(LC,1)+H"(LC,      | 1) 222   | $Sh'(DI,1) = PD^2S(LC,1)$     |                         |

Table 2. Counting H(LC,x) and Sh(DI,x) in Cuboctahedron CO.

Remark the relations between the H(LC,x) and Sh(DI,x) polynomials, at the bottom of Table 2; the most interesting relation (providing a *new topological index*) is:

 $H'(\mathbf{LC},1) + H''(\mathbf{LC},1) = [H(\mathbf{LC},x)*(\mathbf{D}^2 / x) = Sh'(\mathbf{DI},x)]_{x=1}$ 

D being the vector of distances (D=1, 2,..).

From these relations, we can write the general polynomial interchanging relations (even if the LM and M matrices, encoding the same topological property, are not counted) and the general formula for the new "Shell-Matrix" index:

$$H(\mathbf{LM}, x) = Sh(\mathbf{M}, x) / \mathbf{D} = x * Sh'(\mathbf{M}, x) / \mathbf{D}^{2}$$

$$Sh(\mathbf{M}, x) = x * H'(\mathbf{LM}, x)$$
  
 $H'(\mathbf{LM}, 1) + H''(\mathbf{LM}, 1) = [H(\mathbf{LM}, x) * (\mathbf{D}^2 / x) = Sh'(\mathbf{M}, x)]_{x=1}$ 

Keeping in mind the above results, the Hosoya-Diudea polynomials for LM = LR (R being the count of rings around each of the points/atoms in the graph/molecule) is written below, in the case of Cuboctahedron (Table 3).

For other properties of Hosoya-Diudea polynomials see refs.<sup>12,13</sup>

| CO_LR;   | D 0   | 1           | 2                 | 3        |  |  |  |
|----------|-------|-------------|-------------------|----------|--|--|--|
| 1        | 6     | 24          | 36                | 6        |  |  |  |
| 2        | 6     | 24          | 36                | 6        |  |  |  |
| 3        | 6     | 24          | 36                | 6        |  |  |  |
| 4        | 6     | 24          | 36                | 6        |  |  |  |
| 5        | 6     | 24          | 36                | 6        |  |  |  |
| 6        | 6     | 24          | 36                | 6        |  |  |  |
| 7        | 6     | 24          | 36                | 6        |  |  |  |
| 8        | 6     | 24          | 36                | 6        |  |  |  |
| 9        | 6     | 24          | 36                | 6        |  |  |  |
| 10       | 6     | 24          | 36                | 6        |  |  |  |
| 11       | 6     | 24          | 36                | 6        |  |  |  |
| 12       | 6     | 24          | 36                | 6        |  |  |  |
|          | 72    | 288         | 432               | 72       |  |  |  |
| Polyn\D  | 1     | 2           | 3                 | Sum(x=1) |  |  |  |
| H(LR,x)  | 144x+ | $216x^{2}+$ | 36x <sup>3</sup>  | 396      |  |  |  |
| H'(LR,x) | 144+  | 432x+       | $108x^2$          | 684      |  |  |  |
| H"(LR,x) | -     | 432+        | 216x              | 648      |  |  |  |
| Sh(R,x)  | 144x+ | $432x^{2}+$ | 108x <sup>3</sup> | 684      |  |  |  |
| Sh'(R,x) | 144+  | 864x+       | $324x^2$          | 1332     |  |  |  |
|          |       |             |                   |          |  |  |  |

**Table 3.** Counting H(LR,x) and Sh(R,x) in Cuboctahedron CO.

**Table 4.** Polynomials and vertex equivalence classes (by layer matrix of rings LR around vertices; signature as vertex centrality) in three hyper-dodecahedral nanostructures (see Figure 1).

| Structure                                 | Topology: vertex equivalence classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| ID@Ico <sub>20_</sub> 180                 | <b>2H(LR,x)=1200</b> +8400x+19800x^2+33900x^3+49200x^4+51900x^5+35100x^6+14400x^7+2100x^8;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                                           | 2H(LR,1)=216000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| C(G)=12.99082                             | <b>2Sh(R,x)</b> =8400x+39600x^2+101700x^3+196800x^4+259500x^5+210600x^6+100800x^7+16800x^8;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| C/180=0.072171                            | <b>2Sh(R,1)</b> =934200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                           | 2Sh'(R,1)=4581000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| F <sub>3</sub> =400                       | 1. signature: 0.0920938709199495;   # of elements = 30   deg = 9   3^10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 400*3=1200                                | 2. signature: $0.0745279687777991$ ;   # of elements = $60   deg = 5   3^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| 1200*180 = 216000                         | 3. signature: 0.0722421872665493;   # of elements = 30   deg = 9   3^10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                           | 4. signature: $0.0598176790970698$ ;   # of elements = $60   deg = 5   3^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| S <sub>2</sub> (Do)@Do <sub>20</sub> _340 | <b>2H(LR,x)</b> =1200+4320x+10800x^2+17280x^3+22680x^4+30540x^5+37800x^6+41040x^7+41760x^8+41220x^9+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                           | $40140x^{10} + 37080x^{11} + 31140x^{12} + 24480x^{13} + 15660x^{14} + 8880x^{15} + 1740x^{16} + 240x^{17}; 2H(LR, 1) = 408000x^{10} + 100x^{10} + 10$ |  |  |  |  |  |  |  |  |
| C(G)=16.84805                             | <b>2Sh(R,x)</b> =4320x+21600x^2+51840x^3+90720x^4+152700x^5+226800x^6+287280x^7+334080x^8+370980x^9+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| C/340= <b>0.049553</b>                    | $401400x^{10} + 407880x^{11} + 373680x^{12} + 318240x^{13} + 219240x^{14} + 133200x^{15} + 27840x^{16} + 4080x^{17} + 27840x^{16} + 27840x^{16$ |  |  |  |  |  |  |  |  |
| F <sub>5</sub> =240                       | <b>2Sh(R,1)</b> =3425880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| 240*5=1200                                | 2Sh'(R,1)=33416760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| 1200*340=408000                           | 1. signature: $0.0524897500026536$ ; $  \# \text{ of elements} = 60   \text{deg} = 5   5^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                           | 2. signature: $0.0524697638449887$ ;   # of elements = $60   deg = 3   5^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                                           | 3. signature: $0.0496528759692478$ ; $  \# \text{ of elements} = 20   \text{deg} = 3   5^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                                           | 4. signature: $0.0489586396313747$ ;   # of elements = $120   deg = 3   5^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                                           | 5. signature: $0.0460379516518164$ ;   # of elements = $20   deg = 3   5^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                                           | 6. signature: $0.0460271452180233$ ;   # of elements = $60   deg = 3   5^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| DoX <sub>20_</sub> 340                    | <b>2H(LR,x)=1080</b> +3480x^1+7680x^2+13080x^3+19440x^4+23820x^5+28620x^6+32400x^7+35160x^8+35700x^9+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                                           | $35760x^{10} + 34080x^{11} + 32220x^{12} + 25920x^{13} + 20220x^{14} + 12000x^{15} + 5460x^{16} + 1020x^{17} + 60x^{18};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| C(G)=16.39305                             | 2H(LR,1)= <b>367200</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| C/340= <b>0.048215</b>                    | <b>2Sh(R,x)</b> =3480x+15360x^2+39240x^3+77760x^4+119100x^5+171720x^6+226800x^7+281280x^8+321300x^9+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| F <sub>5</sub> =120                       | $+357600x^{10} + 374880x^{11} + 386640x^{12} + 336960x^{13} + 283080x^{14} + 180000x^{15} + 87360x^{16} + 17340x^{17} + 180000x^{16} + 18000$ |  |  |  |  |  |  |  |  |
| F <sub>8</sub> =60                        | + 1080x^18;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| 120*5+60*8=                               | 2Sh(R,1)=3280980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| 1080                                      | 2Sh'(R,1)=33913260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| 1080*340=367200                           | 1. signature: 0.0503930947335793;   # of elements = 60   deg = 3   5.8^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                                           | 2. signature: 0.0503546980956381;   # of elements = 60   deg = 4   5^2.8^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                                           | 3. signature: 0.0477088245398549;   # of elements = 20   deg = 3   8^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                                           | 4. signature: 0.0473085257822019;   # of elements = 120   deg = 3   5^2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                                           | 5. signature: $0.047120519066602$ ;   # of elements = $60   deg = 3   5^2.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                                           | 6. signature: $0.0444873880198875$ ;   # of elements = $20   deg = 3   5^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |

**Hosoya-Diudea polynomials in hyper-dodecahedra.** The above discussed polynomials and related indices have been calculated for the three hyper-dodecahedral nanostructures, shown in Figure 1; the results are listed in Table 4. In case of H(LR,x), the count at D=0 (i.e., the first term) is also

given and it is useful in checking the topology of the cages: 2H(LR,1)=|V(G)|\*Sum(s\*F<sub>s</sub>), Fs being the number of faces of size s. The computations have been made by TOPOCLUJ<sup>14</sup> and Nano Studio<sup>15</sup> softwares. The matrix LR routine in Nano Studio program also provides the equivalence classes for the atoms (see the signature for each class), according to the values of the centrality index (see above). The global value C(G) is also given; the mean value per atom gives the relative centrality of the structures (0.072171 >0.049553> 0.048215, for ID@Ico<sub>20</sub>\_180, S<sub>2</sub>(Do)@Do<sub>20</sub>\_340 and DoX<sub>20</sub>\_340, respectively). It was developed to discriminate the crystallographic networks.

# Conclusions

The polynomial coefficients in Hosoya-Diudea generalized polynomials are calculable from layer/shell matrices, as implemented in the TOPOCLUJ software program. We applied this theory to three hypothetical nanostructures with icosahedral symmetry. New relations among the topological parameters were established. Such polynomial description can be useful in structure elucidation analysis and as an alternative to the crystallographic description.

## Acknowledgements.

The work was supported by the Romanian Grant PN-II-ID-PCE-2011-3-0346.

#### References

- 1. Diudea, M. V.; Gutman, I.; Jäntschi, L. *Molecular Topology*, NOVA: New York, 2001, pp. 11-51
- 2. Diudea, M. V. Layer Matrices in Molecular Graphs. J. Chem. Inf. Comput. Sci. 1994, 34, 1064-1071.

- 3. Diudea, M. V.; Topan, M. I.; Graovac, A. Layer matrices of walk degrees. J. Chem. Inf. Comput. Sci. 1994, 34, 1072-1078.
- 4. Diudea, M. V.; Florescu, M. S.; Khadikar, P. V. *Molecular Topology and Its Applications*, EFICON: Bucharest, 2006, pp 11-46.
- 5. Diudea M. V.; Ursu, O. Layer matrices and distance property descriptors. *Indian J. Chem.* **2003**, *42A*, 1283-1294.
- 6. Diudea, M. V. Valences of property. Croat. Chem.Act. 1999, 72, 835-851.
- 7. Diudea, M. V. Cluj polynomials. *Studia Univ. "Babes-Bolyai"* **2002**, *47*, 131-139.
- 8. Hosoya, H. On some counting polynomials in chemistry. *Discrete Appl. Math.* **1988**, *19*, 239-257.
- 9. Diudea, M. V. Nanomolecules and Nanostructures Polynomials and Indices. MCM, No. *10*, Univ. Kragujevac, Serbia, 2010, pp. 59-71; 169-213.
- 10. Wiener, H. Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 1947, 69, 17–20.
- 11. Randić, M. Novel molecular descriptor for structure-property studies. *Chem. Phys. Lett.* **1993**, *211*, 478-483.
- 12. Diudea, M. V.; Hosoya-Diudea polynomials revisited. MATCH Commun. Math.Comput. Chem. 2013, 69, 93-110.
- 13. Diudea, M. V.; Ashrafi, A. R. Shell-polynomials and Cluj-Tehran index in tori T(4,4)S[5,n]. *Acta Chim. Sloven.* **2010**, *57*, 559-564.
- 14. Ursu, O.; Diudea, M. V. *TOPOCLUJ software package*, "Babes-Bolyai" University, Cluj, 2002.
- 15. Nagy, Cs. L.; Diudea, M. V. Nano Studio software package, "Babes-Bolyai" University, Cluj, 2009.