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Hosoya-Diudea polynomial in hyper structures 
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Abstract. Hosoya polynomial counts finite sequences of distances in a graph G; more 
exactly, it counts the number of points/atoms lying at a given distance in G. The 
polynomial coefficients are calculable by means of layer/shell matrices. Shell matrix 
operator enables the transformation of any square matrix in the corresponding 
layer/shell matrix, thus generalizing the local property counting according to its 
distribution by the distances in G. This represents the “Hosoya-Diudea” generalized 
counting polynomial. We applied this theory to several hypothetical nanostructures 
with icosahedral symmetry. 
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Introduction 

Let G(V,E) be a connected molecular graph, without directed and 

multiple edges and without loops, the vertex and edge-sets of which being 

represented by V(G) and E(G), respectively. Let’s next define the kth 

layer/shell of vertices v lying at distance k with respect to the reference 

vertex i as:  kdGVvviG ivk  );()( . The collection of all its layers 
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defines the partition of G with respect to i:  ],..,1,0[;)()( ik ecckiGiG  , 

with ecci being the eccentricity of i (i.e., the largest distance from i to the 

other vertices in G).  

Layer Matrices. The entries in a layer matrix (of a vertex property) 

LM, are defined as:1-5 

 
,

,

i v

i k v
v d k
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
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with summation being the most used operation on the collected vertices. 

The zero column is just the column of vertex properties   ii p0,LM .The 

Layer matrix LM is a collection of the above defined entries: 

 )](,..,1,0[);(;][ , GdkGViki  LMLM
 

   

with d(G) being the diameter of the graph or the largest distance in G. 

Shell Matrices. The entries in a shell matrix ShM are defined as:4-6 

  
,
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where M is any square topological matrix. Any other operation over the 

square matrix entries    vi,M can be used. The shell matrix is a collection of 

the above defined entries: 

 ,[ ] ; ( ); [0,1,.., ( )]i k i V G k d G  ShM ShM   
  

The zero column  ,0iShM is just the diagonal entries in the info matrix M. 

An index of centrality2,5C(BM) is calculated on these matrices (B=L; Sh) as: 
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Counting Polynomials. Define a distance-based counting 

polynomial as: 

  ( ) ( , ) k

k
P x p G k x       

  

with p(G,k) being sets of  local contributions (of extent k) to the global 

(molecular) property ( ) ( , )P G p G k  and summation running up to d(G).7 

The coefficients in Hosoya-Diudea polynomial are calculable from the 

above defined layer/shell matrices, as the half sums on columns. We use the 

symbol H(LM,x) for the generalized polynomial computed on a layer matrix 

LM while Sh(M,x) is the shell-matrix calculated one. When p(v)=1 (i.e., the 

vertex counting), p(G,k) denotes the number of pair vertices separated by 

distance k in G, and the classical Hosoya polynomial8 is recovered.  

Some single number descriptors (i.e., topological indices TIs) can be 

calculated by evaluating the polynomial derivatives (usually in x = 1):9 

( ,1) ! ( , )k

k
P G k p G k      

The aim of this work is to apply the generalized Hosoya-Diudea 

polynomials in counting face/ring surrounding atoms and their shell-

distances distribution in three hypothetical nanostructures with icosahedral 

symmetry. 

Results and Discussion 

The generalized Hosoya-Diudea polynomials will be calculated on 

cuboctahedron (as a simple structure to illustrate some matrices and 

topological indices herein calculated) and three hyper-dodecahedral 

structures, shown in the Figure 1 below. 

Cage design. The object ID@Ico20_180 is made by decorating with 

icosahedrons Ico the Icosidodecahedron ID, thus any two Ico sharing an 
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edge. Next, by (Poincaré) dualization9 one obtains the hyper-cage 

S2(Do)@Do20_340, in which the core S2(Do) is decorated with dodecahedra 

Do, any two Do sharing an edge. In the above, S2(Do) means the 

“septupling 2” map operation applied on dodecahedron. Finally, DoX20_340 

is made by deleting from S2(Do)@Do20_340 the shared edge (see X in its 

name). Such structures in believed to appear by self-assembling of 

icosahedral and dodecahedral atomic clusters.  

 
 

   
CO_12 ID@Ico20_180 S2(Do)@Do20_340 DoX20_340 

 

 

Figure 1. Cuboctahedron CO and three hyper-dodecahedral nanostructures. 
 

 

 Polynomial examples on cuboctahedron. To exemplify the main 

matrices1,9 used in deriving the main results, we have chosen the semi-

regular polyhedron named cuboctahedron (Figure 1). In Table 1, the 

adjacency A matrix (with entries 1 if two vertices are connected by one 

edge and zero, otherwise) and the distance DI matrix, counting the number 

of edges on the shortest path joining any two vertices in G, the diagonal 

elements being zero, are exemplified.  
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Table 1. Adjacency and Distance matrices in Cuboctahedron CO. 

CO_A (adjacency)   

0   1   1   0   0   1   1   0   0   0   0   0     4 

1   0   0   1   0   0   1   0   0   0   1   0     4 

1   0   0   1   0   1   0   0   0   0   0   1     4 

0   1   1   0   0   0   0   0   0   0   1   1     4 

0   0   0   0   0   1   1   1   1   0   0   0     4 

1   0   1   0   1   0   0   0   1   0   0   0     4 

1   1   0   0   1   0   0   1   0   0   0   0     4 

0   0   0   0   1   0   1   0   0   1   1   0     4 

0   0   0   0   1   1   0   0   0   1   0   1     4 

0   0   0   0   0   0   0   1   1   0   1   1     4 

0   1   0   1   0   0   0   1   0   1   0   0     4 

0   0   1   1   0   0   0   0   1   1   0   0     4 
 

SUM = 48 

1/2SUM = 24  

CO_DI (distance)   

0   1   1   2   2   1   1   2   2   3   2   2     19 

1   0   2   1   2   2   1   2   3   2   1   2     19 

1   2   0   1   2   1   2   3   2   2   2   1     19 

2   1   1   0   3   2   2   2   2   2   1   1     19 

2   2   2   3   0   1   1   1   1   2   2   2     19 

1   2   1   2   1   0   2   2   1   2   3   2     19 

1   1   2   2   1   2   0   1   2   2   2   3     19 

2   2   3   2   1   2   1   0   2   1   1   2     19 

2   3   2   2   1   1   2   2   0   1   2   1     19 

3   2   2   2   2   2   2   1   1   0   1   1     19 

2   1   2   1   2   3   2   1   2   1   0   2     19 

2   2   1   1   2   2   3   2   1   1   2   0     19 

SUM = 228=2W   

1/2SUM = 114=W    
  

 

Table 2 illustrates the layer LC and shell Sh(DI) matrices for the 

cuboctahedron, along with the derived polynomials and corresponding 

topological indices. 

The first derivative (in x=1) of the classical Hosoya polynomial, 

equal to H(LC,x) polynomial, provides the well-known Wiener index10 W, 

that counts all the distances in G (or half-sum of the entries in the DI 

matrix): '(1)W H . Next, the hyper-Wiener index11 is calculated as: 

'(1) (1 / 2) "(1)WW H H  . 

Remark the relations between the H(LC,x) and Sh(DI,x) 

polynomials, at the bottom of Table 2; the most interesting relation 

(providing a new topological index) is:  

  
2

1'( ,1) "( ,1) [ ( , ) * ( / ) '( , )]xH H H x x Sh x   LC LC LC D DI  

D being the vector of distances (D=1, 2,..). 
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Table 2. Counting H(LC,x) and Sh(DI,x) in Cuboctahedron CO. 

  LC(CO)     Sh(DI(CO))   

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

  1   4   6   1     12      1   4   12  3     20    

    48  72  12   132        48  144 36    228   

   Sum(x=1)     Sum(x=1)

H(LC,x) 24x+36x2+6x3 66  Sh(DI,x)=H(LC,x)*D    24x+72x2+18x3 114=W 

H'(LC,x) 24 +72x+ 18x2       114=W  Sh(DI,x)=x*H'(LC,x)    

H"(LC,x) 72+36x 108  Sh(DI,1)=H’(LC,1)  

H'(LC,x)+H"(LC,x) 96+108x+18x2 222  Sh'(DI,x) 24+ 144x+ 54x2  222 

PD2S (LC,1)              24+144+54              222 Sh'(DI,x)= H(LC,x)*(D2/x)    

PD2S(LC,1)             H’(LC,1)+H”(LC,1) 222 Sh'(DI,1)= PD2S (LC,1)    

 

Remark the relations between the H(LC,x) and Sh(DI,x) 

polynomials, at the bottom of Table 2; the most interesting relation 

(providing a new topological index) is:  

  2
1'( ,1) "( ,1) [ ( , ) * ( / ) '( , )]xH H H x x Sh x   LC LC LC D DI  

D being the vector of distances (D=1, 2,..). 

From these relations, we can write the general polynomial inter-

changing relations (even ifthe LM and M matrices, encoding the same 

topological property,are not counted) and the general formula for the new 

“Shell-Matrix” index: 
2( , ) ( , ) / * '( , ) /H x Sh x x Sh x LM M D M D  



Hosoya-Diudea polynomial in hyper structures 

 

89

( , ) * '( , )Sh x x H xM LM  

2
1'( ,1) "( ,1) [ ( , ) * ( / ) '( , )]xH H H x x Sh x   LM LM LM D M  

Keeping in mind the above results, the Hosoya-Diudea polynomials 

for LM = LR (R being the count of rings around each of the points/atoms in 

the graph/molecule) is written below, in the case of Cuboctahedron (Table 3). 

For other properties of Hosoya-Diudea polynomials see refs.12,13  

Table 3. Counting H(LR,x) and Sh(R,x) in Cuboctahedron CO. 

CO_LR; D  0 1 2 3  

1 6 24 36 6  

2 6 24 36 6  

3 6 24 36 6  

4 6 24 36 6  

5 6 24 36 6  

6 6 24 36 6  

7 6 24 36 6  

8 6 24 36 6  

9 6 24 36 6  

10 6 24 36 6  

11 6 24 36 6  

12 6 24 36 6  

 72 288 432 72  

Polyn\D 1 2 3 Sum(x=1) 

H(LR,x) 144x+ 216x2+ 36x3 396 

H'(LR,x) 144+ 432x+ 108x2 684 

H"(LR,x) -  432+ 216x 648 

Sh(R,x) 144x+ 432x2+ 108x3 684 

Sh'(R,x) 144+ 864x+ 324x2 1332 
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Table 4. Polynomials and vertex equivalence classes (by layer matrix of 
rings LR around vertices; signature as vertex centrality) in three hyper-
dodecahedral nanostructures (see Figure 1). 
 

Structure Topology: vertex equivalence classes 

ID@Ico20_180 

 

C(G)=12.99082 

C/180=0.072171 

2H(LR,x)=1200+8400x+19800x^2+33900x^3+49200x^4+51900x^5+35100x^6+14400x^7+2100x^8; 

2H(LR,1)=216000 

2Sh(R,x)=8400x+39600x^2+101700x^3+196800x^4+259500x^5+210600x^6+100800x^7+16800x^8;  

2Sh(R,1)=934200 

2Sh’(R,1)=4581000 

F3=400 

400*3=1200 

1200*180 = 216000 

1. signature: 0.0920938709199495; | # of elements = 30 | deg = 9 | 3^10 

2. signature: 0.0745279687777991; | # of elements = 60 | deg = 5 | 3^5 

3. signature: 0.0722421872665493; | # of elements = 30 | deg = 9 | 3^10 

4. signature: 0.0598176790970698; | # of elements = 60 | deg = 5 | 3^5 

 

S2(Do)@Do20_340 

 

C(G)=16.84805 

C/340=0.049553 

F5=240 

240*5=1200 

2H(LR,x)=1200+4320x+10800x^2+17280x^3+22680x^4+30540x^5+37800x^6+41040x^7+41760x^8+41220x^9+ 

40140x^10+37080x^11+31140x^12+24480x^13+15660x^14+8880x^15+1740x^16+240x^17;2H(LR,1)=408000 

2Sh(R,x)=4320x+21600x^2+51840x^3+90720x^4+152700x^5+226800x^6+287280x^7+334080x^8+370980x^9+ 

401400x^10+407880x^11+373680x^12+318240x^13+219240x^14+133200x^15+27840x^16+4080x^17 

2Sh(R,1)=3425880 

2Sh’(R,1)=33416760 

1200*340=408000 

 

1. signature: 0.0524897500026536; | # of elements = 60 | deg = 5 | 5^6 

2. signature: 0.0524697638449887; | # of elements = 60 | deg = 3 | 5^3 

3. signature: 0.0496528759692478; | # of elements = 20 | deg = 3 | 5^3 

4. signature: 0.0489586396313747; | # of elements = 120 | deg = 3 | 5^3 

5. signature: 0.0460379516518164; | # of elements = 20 | deg = 3 | 5^3 

6. signature: 0.0460271452180233; | # of elements = 60 | deg = 3 | 5^3 

 

2H(LR,x)=1080+3480x^1+7680x^2+13080x^3+19440x^4+23820x^5+28620x^6+32400x^7+35160x^8+35700x^9+ 

35760x^10+34080x^11+32220x^12+25920x^13+20220x^14+12000x^15+5460x^16+1020x^17+60x^18; 

2H(LR,1)=367200 

2Sh(R,x)=3480x+15360x^2+39240x^3+77760x^4+119100x^5+171720x^6+226800x^7+281280x^8+321300x^9+ 

         +357600x^10+374880x^11+386640x^12+336960x^13+283080x^14+180000x^15+87360x^16+17340x^17+ 

         + 1080x^18; 

2Sh(R,1)=3280980 

2Sh’(R,1)=33913260 

DoX20_340 

 

C(G)=16.39305 

C/340=0.048215 

F5=120 

F8=60 

120*5+60*8= 

1080 

1080*340=367200 1. signature: 0.0503930947335793; | # of elements = 60 | deg = 3 | 5.8^2 

2. signature: 0.0503546980956381; | # of elements = 60 | deg = 4 | 5^2.8^2 

3. signature: 0.0477088245398549; | # of elements = 20 | deg = 3 | 8^3 

4. signature: 0.0473085257822019; | # of elements = 120 | deg = 3 | 5^2.8 

5. signature: 0.047120519066602; | # of elements = 60 | deg = 3 | 5^2.8 

6. signature: 0.0444873880198875; | # of elements = 20 | deg = 3 | 5^3 

 

Hosoya-Diudea polynomials in hyper-dodecahedra. The above 

discussed polynomials and related indices have been calculated for the three 

hyper-dodecahedral nanostructures, shown in Figure 1; the results are listed 

in Table 4. In case of H(LR,x), the count at D=0 (i.e., the first term) is also 
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given and it is useful in checking the topology of the cages: 

2H(LR,1)=|V(G)|*Sum(s*Fs), Fs being the number of faces of size s. The 

computations have been made by TOPOCLUJ14 and Nano Studio15 

softwares. The matrix LR routine in Nano Studio program also provides the 

equivalence classes for the atoms (see the signature for each class), 

according to the values of the centrality index (see above). The global value 

C(G) is also given; the mean value per atom gives the relative centrality of 

the structures (0.072171 >0.049553> 0.048215, for ID@Ico20_180, 

S2(Do)@Do20_340 and DoX20_340, respectively). It was developed to 

discriminate the crystallographic networks. 

Conclusions 

The polynomial coefficients in Hosoya-Diudea generalized 

polynomials are calculable from layer/shell matrices, as implemented in the 

TOPOCLUJ software program. We applied this theory to three hypothetical 

nanostructures with icosahedral symmetry. New relations among the 

topological parameters were established. Such polynomial description can 

be useful in structure elucidation analysis and as an alternative to the 

crystallographic description. 
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