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Abstract: In this paper, four novel topological indices named as neighbourhood
version of forgotten topological index (Fy), modified neighbourhood version of
Forgotten topological index (Fy™), neighbourhood version of second Zagreb index
(M,™) and neighbourhood version of hyper Zagreb index (HMy) are introduced. Here
the relatively study depends on the structure-property regression analysis is made to
test and compute the chemical applicability of these indices for the prediction of
physicochemical properties of octane isomers. Also it is shown that these newly
presented indices have well degeneracy property in comparison with other degree
based topological indices. Some mathematical properties of these indices are also
discussed here.
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Introduction
Throughout this article we use only molecular graph'? a connected

graph having no loops and parallel edges. In molecular graph nodes and edges
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correspond to the atoms and chemical bonds of compound, respectively. Let G
be a chemical graph containing V(G)and E(G)as vertex set and edge set
respectively. The degree of a vertex v on a graphG, denoted by deg. (v), is the
total number of edges associated with v. LetN;(v) denotes the set of
neighbours of the vertex v. In chemical graph theory, topological indices play a
leading role specifically in the quantitative structure property relationships and
quantitative structure activity relationship modelling’. A topological index is a
numeric value that is graph invariant. A real valued mapping considering
graphs as arguments is called a graph invariant if it gives same value to
isomorphic graphs. The order (total count of nodes) and size (total count of
edges) of a graph are examples of two graph in variants. In chemical graph
theory, the graph invariants are named as topological indices. The idea of
topological indices was initiated when the eminent chemist Harold Wiener
found the first topological index, known as Wiener index’ in 1947 for
searching boiling points of alkanes. One of the topological indices invented on
initial stage is the so called Zagreb index first presented by Gutman and
Trinajsti¢>®, where they investigated how the total energy of m-electron
depends on the structure of molecules and it was discussed in details. The first
(M,(G)) and the second (M,(G)) Zagreb indices for a molecular graph Gare

defined as follows:

Ml(G) = ZvEV(G) degG (v)z = ZuveE(G)[degG (u) + degG (U)],
M,(G) = Z degg(w)degg(v).
UveE(G)
For more discussion on these indices, inquisitive readers are referred
the papers’'®. Furtula et al.'” introduced the forgotten topological indices as

follows:
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FG) = ) dege@)®= ) [degg(w)? +degg(v)’].

vEV(G) uveE(G)

For more discussion on this index readers are referred'®*’. Following
the first Zagreb index present authors* introduced a degree based topological
index named as the Neighbourhood Zagreb index (M) which is defined as
follows:

8 = ) degg(w,

u€ENg(v)

My@ = ) 8w

vev(G)

Inspiring from the Zagreb and Forgotten topological indices we present
here four new topological indices named as neighbourhood version of
forgotten topological index (Fy), modified neighbourhood version of
Forgotten topological index (Fy™), neighbourhood version of second Zagreb
index (M,") and neighbourhood version of hyper Zagreb index (HM,)which
are defined as follows:

W@ = ) 50

VeV (G)

A(©) = ) (65 + 8w)7)

UveE(G)

MO = ) [88w)]

UVEE(G)
HMY @ = ) [86) + 8.
UveE(G)
The objective of this work is to discuss some mathematical properties

and check the chemical applicability of these newly introduced indices. Here
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we find the correlation coefficients of the newly designed indices and some
well-established indices with acentric factor and entropy for octane isomers. In

addition we investigate the degeneracy of the novel indices.

Preliminaries
In this section, we obtain some mathematical properties of the newly
introduced indices. Applying some standard lemma, we compute some bounds
of the aforesaid novel indices. We start with the following lemma:
Lemma 1.For a graph G, we have
(1) Xu EV(G)[(SG (u)] = M,(G),
(i) Yuver)[0c (W) + 6 ()] =2M,(G).
Lemma 2. (Cauchy-Schwartz inequality)22Let x; and y; be real numbers for all
1 <i <n.Then
Clmixy)? < QB D i vid). (1)
Equality holds if f x; = ky;for some constant k and foreach 1 < i < n.
Proposition 1. Let G be a graph with m edges, whose second Zagreb index is
M, (G), then we have

4M2(G
HM,y(G) > :n( ),

withequality holds if f 6;(u) + 85 (v) = k for some constant k, Vuv € E(G).
Proof. In (1), considering x; = 8;(u) + 6;(v),y; = 1, we have

2
< Z [66(w) +5G(V)]> = Z [66(w) + 66 (v)]? Z 12,
UveEE(G) UuveE(G)

uveE(G)
applying the definition of HMy and lemma 1, we get the required result. From
lemma 2, it is clear that equality holds iff 6;(u) + 6;(v) = k for some
constant k, Vuv € E(G).
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Lemma 3.”Let (xy,X,,...,X,) be positive n-tuple such that there exists
positive number 4, a satisfying 0 < a < x; < A, then we have

nSLx? 1 (VA @)’
(Z?=1xi)2 —_ 4(\/6-"_\/2) ) (2)
A
where equality holds iffa=A4 or q = Aa1 n is an integer and g of the
S+

a

numbers x; coincide with a and the remaining (n — q) of the x;’ s coincide
with A(# a).
For a graph G consider

Ay = max{é;(v): u € V(G)},

6y = min{d;(v): u € V(G)}.
Now putting a = 28y, A = 24y, x; = §;(w) + Ag(v) in (2)and using lemma
1, we have the following proposition.
Proposition 2. Let G be a graph with m edges, whose second Zagreb index is
M,(G), then we have

M,(G)? (Ay + 8y)?

HMy(G) < AD )
NON
AN
where equality holds if f Ay= éyor q = AliN -m, is an integer and q of the
Ny
SN

numbers x; coincide with §y and the remaining (m — q) of the x;’ s coincide
with Ay (# 6y).
Lemma 4. LetX = (X1, X3, ..., X,,) and Y = (¥4, Y2, --., ¥n) be sequence of real
numbers. Also let Z = (24, Z,, ..., Z,) and W = (Wy, Wy, ..., W, )be non-negative
sequences. Then,

awi Sy zix? + X 2 B wiy? 2 230 2 il wiy 3)

In particular, if z; and w; are positive, then the equality holds

=l

=y= I—é, where k = (k,k, ..., k), a constant sequence.

iff
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Proposition 3. For any graph G with Neighbourhood Zagreb index and first
Zagreb index My (G) and M, (G) respectively, we have

Fu(6) = 2My (G) — My (G), @)
where equality holds if f G is P,.
Proof. Considering x; = 6;(u), y; =1, z; = §;(w),w; = 1in (3), we obtain
Y1 12 uer(e) 66 (W) + Xuer(e) S (W) Xe11 2 2 Xyep(e) 66 (W) ? X1y 1. (5)
After using the definition of Fy, and My indices and applying lemma 1, we
obtain the required result. According to the lemma 3, the equality in (4) holds
iff 6¢(u) =1Vu€eV(G),i.e.G is P,. Hence the proof.
Lemma 5. (Radon’s inequality) If a;, b; > 0,i = 1,2, ...,n,p > 0, then

l 1 l (Zl 14 l)p+1

I 1b3" — b))’
where equality holds if f a; = kb; for some constant k,Vi = 1,2, ...,n

(6)

For a graph G, considering a; = §;(u),b; = 1,p = 2, in (6), we have
the following proposition.
Proposition 4. For any graph with n vertices, we have

Fy(6) = 1,

(7
where equality holds if f G is regular or complete bipartite graph.
Proposition S.Let G be a graph, whose first and neighbourhood Zagreb indices

are M, (G) and My (G) respectively. Then

My (6)?
>V

Proof. LetG be a graph and u € V(G). The weighted averages of §;(u) and

squares of 6, (u) are

Zuev(a) w(w)dg(u)
Zuev(a) w(u)

(dhw =
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(d?)., = ZuEV(G)W(u)5(;(u)2
v Zuev(c) w(u)

)

where w(u) is weight corresponding to the vertex u of G. For any non-
negative weight, (d?),, = ({(d),,)?. Choosing w(u) = 6;(u) and using
definitions of Fy(G), My (G)and M, (G),we obtain the bound ().

Chemical significance of the newly introduced indices

According to the report of the IAMC (International Academy of
Mathematical Chemistry), the chemical applicability of a topological index can
be evaluated by regression analysis. Naturally 18 octane isomers are helpful for
such investigation, since the number of the structural isomers of octane is large
(18) enough to create the statistical perfection faithful. Furtulaet al."” shown
that M; and F yield correlation coefficient greater than 0.95 with acentric
factor and entropy for octane isomers. Also a simple linear model (M; + AF),
where A is varied from -20 to 20 is designed to improve the predictive ability
of these indices. De et al.computed that the correlation coefficient of F-coindex
for octane isomers in case of the logarithm of the octanol-water partition
coefficient (P) is 0.966. In a recent work®* the application possibilities of
various graph irregularity indices for the prediction of physicochemical
properties are described. We find the correlation of different physiochemical
properties with Fy, Fy", M," and HMyof octane isomers and good results are
obtained in case acentric factor (Acent Fac.) and entropy (S) which are shown
in this report (Table 2). The correlations of acentric factor and entropy with
some well-known degree based topological indices are also investigated in
Table 3. The results are also shown graphically in Figure 1 and Figure 2. The

data of octane isomers (Tablel) are collected

fromwww.moleculardescriptors.eu/dataset/dataset.htm.  Thus the newly
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introduced indices can help to predict the entropy and acentric factor with
powerful accuracy.
Table 1.Experimental values of the acentric factor, entropy (S) and the

corresponding values of Fy, Fy*, M,",and HM,.

Molecule Acent S Fy(G) Fy'(G) My"(6) HMy(G)
name Fac.
n-octane 0.397898 111.67 326 172 84 340
2-methyl 0.377916  109.84 406 202 98 398
heptane

3-methyl 0.371002 111.26 448 224 106 436
heptane
4-methyl 0.371504 109.32 472 228 107 442
heptane
3-ethyl hexane 0.362472 109.43 520 252 115 482
2,2-dimethyl  0.339426 103.42 632 282 132 538
hexane
2,3-dimethyl  0.348247 108.02 582 282 129 540
hexane
2,4-dimethyl  0.344223 10698 558 258 121 500
hexane
2,5-dimethyl 0.35683 105.72 486 232 113 458
hexane
3,3-dimethyl  0.322596 104.74 728 324 148 620
hexane
3,4-dimethyl  0.340345 106.59 630 306 136 578

hexane
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Table 1. Continued

2-methyl-3- 0.332433  106.06 666 312 137 586
ethyl pentane

3-methyl-3- 0.306899 101.48 806 374 163 700
ethyl pentane
2,2,3-trimethyl  0.300816  101.31 850 384 171 726
pentane
2,2, 4-trimethyl  0.30537  104.09 778 312 147 606
pentane
2,3,3-trimethyl  0.293177 102.06 874 408 179 766
pentane
2,3,4-trimethyl  0.317422 10239 728 342 151 644
pentane

2,2,3,3- 0.255294  93.06 1070 488 217 922
tetramethyl

butane

Table 2. Correlation coefficient of Fy, Fy", M,* and HM,, with acentric factor

and entropy (S).
Fy(G) Fy'(6) M, (G) HMy(G)
Acent Fac. -0.99457 -0.97547 -0.98533 -0.98049
S -0.93831 -0.93164 -0.94809 -0.93784

Table 3. Correlation coefficient of M;, M,, and F with acentric factor and

entropy (S).
M, (G) M, (G) F(G)
Acent Fac. -0.97306 -0.98642 -0.96505
S -0.95429 -0.94169 -0.95272

Now, we depict the correlations discussed above in the following figures.
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Figure 1. Correlations of acentric factor and entropy (S) with the newly introduced indices for

octane isomers.
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Acent Fac.
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Figure 2. Correlations of acentric factor and entropy (S) with some well established indices
(M;, M,, and F) for octane isomers.

The aim of molecular descriptors is to encode the structural
characteristics of a molecule to the greatest extent possible. Ideally, a
molecular descriptor should distinguish between two different structural

formulae. A major drawback of most topological indices is their degeneracy,
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i.e.,two or more isomers possess the same topological index. Topological
indices having high discriminating power captures more structural information.
We use the measure of degeneracy known as sensitivity introduced by

Konstantinova®, which is defined as follows:

N_NI
SI: N )

where N is the total number of isomers considered and N;is the number of

them that cannot be distinguished by the topological index I. As S, increases,
the isomer-discrimination power of topological indices increases. The vertex
degree based topological indices have more discriminating power in
comparison with other classes of molecular descriptors. For octane isomers, the
newly introduced indices exhibit good response among other investigated
degree based indices (Table 4).

Table 4. Measure of sensitivity (S;) of different indices for octane isomers.

Indices Sensitivity (S;)
M," 1.000
HMy 1.000
Fy 0.944
Fy* 0.889
Connectivity index () 0.889
Hyper Zagreb index(HM) 0.833
Second Zagreb index (M,) 0.722
Hosoya index (Z) 0.778
Forgotten topological index (F) 0.389
First Zagreb index (M,) 0.333

Also these new indices have very good correlations with some well-
established degree based topological indices (Table 5) which can predict
physiochemical properties with high accuracy. Thus we can say that these

novel indices are chemically significant.
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Table 5. Correlation coefficients of Fy, Fy", M," and HM, with some other

indices.

Fy, F, M, HMy M, M, F

Fy 1
Fy', 0987 1

M,* 0992 099 1

HM, 0989 0.999 0999 1

M, 0961 0925 0952 0936 1

M, 0991 0997 0998 0998 0948 1

F 0957 0919 0948 0931 099 0939 1
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Figure 3. Correlations of some well-established degree based indices (M;, M;, and F) with
novel indices.
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Conclusion

In this report, we have introduced some new topological indices. Some
mathematical properties of the newly proposed topological indices are discussed.
Their chemical applicability is also investigated here. These indices have
significant correlation with acentric factor and entropy in comparison with
M;, M, and F, shown in Table 2 and Table 3. Also Table 4 exhibits their
supremacy in discriminative power in comparison to the other well-known
investigated indices. Thus the four novel indices Fy, Fy", M, and HM,, deserve to
be considered as applicable topological indices. We have correlated indices among
themselves and with some other well-known degree-based topological indices in
Table 5. From the correlations among the novel indices, it is clear that Fy and
Fy" have good quality among four indices. For further research, these indices can
be computed for various graph operations and some composite graphs and

networks.
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